L A S ER
' 2,77d/
L
~

Benchmarking and Performance
Analysis of the CM-2

David W. Myers
George B. Adams III

December, 1988

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 88.19

NASA Cooperative Agreement Number NCC 2-387

{NASA-CR~-185406) BENCHMARKING AND N89-2€419
PERFORMANCE ANALYSIS OF THE CM-2 [Research
Inst. for Advanced Computer Science) 114 p
CsSCL ¢9B Unclas
G3/61 0217901

RINGS

Research Institute for Advanced Computer Science

Benchmarking and Performance
Analysis of the CM-2

David W. Myers*
George B. Adams II*

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 88.19
December, 1988

A suite of benchmarking routines testing communication, basic arithmetic operations, and selected

kernel algorithms written in *LISP and PARIS was developed for the CM-2. Experiment runs are

automated via a software framework that sequences individual tests, allowing for unattended
overnight operation. Multiple measurements are made and treated statistically to generate well-

characterized results from the noisy values given by cm:time. The results obtained provide a

comparison with similar, but less extensive, testing done on a CM-1. Tests have been chosen to

aid the algorithmist in constructing fast, efficient, and correct code on the CM-2, as well as gain

insight into what performance criteria are needed when evaluating parallel processing machines.

The work reported herein was supported in part by Cooperative Agreement NCC2-387 between
the National Aeronautics and Space Administration (NASA) and the Universities Space Research
Association (USRA) and the Defense Advanced Research Projects Agency (DARPA). The
contents of this document do not represent the official position of NASA or DARPA.

*The authors are with the School of Electrical Engineering, Purdue University, West Lafayette,
Indiana. Work performed while visitors at RIACS and performed at the School of Electrical
Engineering, Purdue University.

Page

INtroduUCtiOn coiviveiiciiiiiiiiicrtccnreee s s erse s s asea s senne 1
MethOdOIOZY weveiererereieciririrrcrnnnrintestiesteeecsenaeeeneserssessesarssssossossssnsanennessones 4
P20 T D 11 -4 « R SR PPTPR 4
2.2 C0de cocvirririiiiieeniniiiiininentinssieetttttaiartnsensssseesssssassassessesstsssrsssorensesssane 5
2.2.1 Main Body .cceeeeeeerieiiiimmienncererreresseiesranceceserasssersssersssasssnssons 5
2.2.2 Timing Routines 6
2.2.3 Message Concentration Functionccccviiiiiniinviniciiicecinennns 7
2.2.4 Statistics Functionccvvvviiivinnnniiiininniicinnicsneninenes 8

2.3 Experiment Executioncccociiiiieuiiiieiininnrecinciniiiieicnncsiicniocseecses . 10
Results and Analysisccccecverrinnnecoreeiinnreicereenicesioccnes tevereentestesasesernrsrnee 12
3.1 Tables .vvcecrriiiiiiiiiinriiiisineinnriieetreasteeetensecessssnasaessessene Ceeeeresanes veee 12
3.2 Communi;ation Tests ADalysis .iccccvrieecvrnnrnrercrerisssnunesssrrarsecssnnoscens 17
3.3 Algorithm Tests Analysisccccccvvvemiiiiiiicciiiinmenesiccsnieanecsiscnesenen 29
Conclusion .:.cccveseeeene tereeersesetianestessttetssnsesrererasassessararsonssssessane cavesoasernsen 31
Referencescueneenns rettestsretaetersabtttaeatttanttasetsbteetetstessesnriesartrrantrraras 32
Appendicescccerenen eersaneenee reteereeeesetesetestetreaatettatattttssessttestsreraseante 33
6.1 Appendix A: Performance Measurement Skeletoncc.cccceerieniennns 34
6.2 Appendix B: Communication Testscccccceeriieiiiiiinereeeeiriececrenes coerns 37

6.3 Appendix C: Batch Command Utilitiesccccccriiiinninninunniniieenieneees 63

1 Introduction

The impetus for undertaking an analysis of the CM-2 comes from several
sources. First, many of the researchers at RIACS need timing information
about various aspects of the CM-2. Much of the desired information is not
readily available. Algorithmists can use this information to make prudent
choices when writing code targeted for the CM-2. Secondly, the
measurements taken on the CM-2 help to characterize aspects of the
performance of the machine. Lastly, performance measures are needed to
fully understand the consequences of desigfx decisions made during
development of the machine. Hence, this knowledge will aid the design

process of future paralle] processing machines.

The CM-2 is a single instruction stream, multiple data stream (SIMD)
computer. The CM-2 system is comprised of three functional subsystems (see
Figure 1): the control unit , which includes a front-end host computer and an

interface to the ‘‘computational engine” of the CM-2 system called the

sequencer; the processor/memory pairs (PEs); and the interconnection
network. The control unit provides the user interface, executes serial portions
of the users’ CM-2 programs, and supplies the flow of instructions and data
into the CM-2 for execution of the parallel portions of code. Currently,

supported host processors include the Symbolics 3600 and the DEC VAX 8350.

CM-2 programming languages include *Lisp (pronounced star lisp) and
C* (pronounced see star), which provide extensions to Common Lisp and to C,

respectively, to support the writing of parallel code. These two high-level

TR 88.19 -2- December 1988

languages can include calls to the CM-2 assembly language Paris (PARallel

Instruction Set).

Each PE consists of a 3-input bit serial ALU. Hence, the simplicity of the
design of each PE permits sixteen PEs to be located on one chip. Each chip is
a physical node in a twelve dimensional hypercube interconnection network.
Sixty-four kilobits of bit-addressable memory are allocated to each PE, which

means that a full CM-2 (64K PEs) contains 512 megabytes of memory.

Most of the experiments in this work do not pertain to the control unit
directly. Instead, they focus on the parallel portion of the CM-2 system: the

PEs and the interconnection network.

TR 88.19

Control Unit

December 1988

PEO

PE1

PE 2

PEn

Interconnection Network

Figure 1: Typical SIMD computer structure.

TR 88.19 -4- December 1988

2 Methodology

The approach taken in this work is to conduct the analysis in the manner
used in the traditional sciences such as physics or as chemistry. All
measurements reported are reproducible results. Experiments conducted to
test a hypothesis include a carefully constructed control. All raw
measurement data, statistical reduction routines, and experiment codes are
available to the interested reader by contacting the cbrresponding author,

Adams.

2.1 Experiment Design

Timing data can be used to help compare the CM-2 with other machines.
However, care must be taken if a meaningful comparison is to be made. This
is so in part because it is not fully understood what parameters should be used
when comparing two parallel processing computers, or when comparing a

parallel computer to a serial “conventional’” computer.

When deciding what experiments to run on the CM-2, several factors are
considered. First, in many cases tests are designed explicitly to exercise a
specific portion of the CM-2 or a particular software function. Secondly, in
other cases a detail of the machine was not described in the documentation or
in the literature [HILSS, .TM86, TM87a, TM87b], a hypothesis about the
aspect was made, and then an experiment was designed to test this hypothesis.
For example, the existence of simultaneous, bidirectional communication over
the hypercube interconnection network between adjacent processors is not

explicitly listed. A hypothesis was formulated, an experiment was designed, a

4}

TR 88.19 -5- December 1988

test was run, and simultaneous, bidirectional communication capability was
verified. Finally, specific algorithms were employed to assess the performance
of the CM-2. For instance, a digital image smoothing algorithm tests several

important properties of the CM-2. These include nearest neighbor

communications, integer addition, and integer division.

2.2 Code

All measurements were written using the *Lisp programming language.
The magnitude of the benchmarking and of the performance analysis task
undertaken demanded automation of as much of the work as feasible and
required good programming practice to contain to a single module those
aspects of ‘the codes that changed between measurements or experiments. The
test codes consist of four modules: the main body, the timing routines, the

message concentration function, and the statistics function.

2.2.1 Main Body
The main body of each test suite carries out two tasks. These tasks
include opening/closing the output files and calling the timing routines, which

embody the measurements and experiments to be conducted.

Each test file manipulates two data files. The first data file contains all
the timing measurements, the ‘“raw’ data, used by the statistics function.
The second data file contains the statistics reported about each timing routine.
Data are written into this file from the statistics function and the message

concentration function of each test file (see Sections 2.2.3 and 2.24,

TR 88.19 -6- December 1988

respectively). As mentioned above, the second primary task managed by the
main body involves calling the timing routines. Two parameters are passed to
each timing routine. The first parameter, time-loop, dictates the number of
sample times to be recorded for statistical treatment (100 was used for each
experiment); the second parameter, time-test, determines the number of

executions of an instruction during any one time-loop timing run.

2.2.2 Timing Routines

Each timing routine embodies one measurement. An experiment thus
consists of at least two timing routines (measurements), one to act as the
control and one to test the hypothesis. To date, the types of tests run include
communication, arithmetic, and selected kernel algorithms (see Section 3 for
further details about specific tests). All timing routines sha.r;a a common
skeleton (see Figure 2), and differ only in the details pertaining directly to the
test. A description of the test to be executed is written to the raw data file
and to the statistics ‘file, and a vector is created to store the time-loop
execution times. Notice the two do loops in Figure 2. The outer do loop
corresponds to the time-loop samples; whereas, the inner do loop is needed to
compensate for certain characteristics of the timing routine used (em:time,

see Section 2.2.4). Finally, after all timing runs executed, the message

concentration function and the statistics function are called.

TR 88.19 -7 - December 1988

1
;33 Timing #example
;33 Date
;33 Written by: David Myers
;33 Description: This is the skeleton used for the timing tests.
;33 Active Processors:
;33 Size of Data Used:
(*defun time-?? (time-loop test-loop)
(format *fp* ""%SHORT DESCRIPTION"%")
(format *data* ""%SHORT DESCRIPTION"%")
(*all
(let ((values 0))
(setq values (make-array ’(100) :fill-pointer 0))

”
;; Test set-up code goes here

’”

(dotimes (i time-loop)
(format t ""d"%" 1)
(multiple-value-bind (a em-time b c)
(cm:time
(dotimes (j test-loop)

3
;; Code to be timed goes here

12

" :return-statistics-only-p t)

(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop)))))

Figure 2: Timing skeleton.

2.2.3 Message Concentration Function

The concentration function used here is the same function used by Bill
O'Farrell in his tests at Syracuse University on the CM-1 [OFA87|. This

function was used in the CM-2 study primarily during experiment debugging

TR 88.19 -8- December 1988
as a tool to help verify that tests are functioning as intended. The
information reported by the concentration function includes:

1. The number of active PEs.

2. The number of PEs receiving messages.

3. The average number of messages received. This number is equal to

#PEs receiving msgs
#active PEs

4. The maximum of the number of messages received by each active PE and

the number of PE(s) receiving this many messages.

The information from points 1 through 4 above and the information from the
statistics function are written into a log file along with a descriptive title of
the test. For each rum, an additional data file is created to store the data

returned by em:time.

2.2.4 Statistics Flunction

Statistics on the numbers reported from each timing routine are
computed by the statistics function (see Appendix A). The parameters needed
by the statistics function include the number of sample values, time-loop, and
the sample values, values. The statistics calculated entail the maximum,
minimum, average, and standard deviation. The maximum and the minimum
of the samples are computed using the Lisp functions max and min,

respectively. The average is computed as follows:

time—loop values;
average =),
j=1

(1)

time —loop

The standard deviation is computed using:

TR 88.19 -9 - December 1988

std—dev=“m§_]mp[xt] —[=]1_(2 . (2)

=1 (D1 n—1

The function supplied by Thinking Machines Corp. for timing executions
on the CM-2 is cm:time. The first time em:time is called during a user
session, the ratio of CM-2 cycles to host machine cycles is determined. Then,
after all the CM-2 internal buffers have been cleared of previous
macroinstructions, the system time is recorded and the CM-2 idle timer is
reset (note: whenever the CM waits for instructions from the front end, the
idle timer counter is incremented). Next, em:time runs the *Lisp form it was
given, and on completion of the form, the idle time and the system time are
once again recorded. From this information, the CM-2 active time, fhe front

eﬁd time, and the utilization are estimated.

A primary concern when conducting measurements is the accuracy and
precision of results being reported. Early experimentation determined that
cm:time is not precise for short program runs, because it depends on values
obtained from the front-end system clock. The system call used to access the
clock runs with non-deterministic timing due to other processes on the front

end.

Because of the overhead involved in activating cm:time, this utility is
not accurate when fiming only several (Paris) instructions. Thinking
Machines does include a constant factor for the overhead time in the ;:ode for
cm:time; however, it does not alleviate timing inaccuracy. To overcome the
limited precision of the results reported by cm:time, each code segment is

executed repetitively within em:time. Testing determined that the numbers

TR 88.19 -10 - December 1988

reported are quite precise if the total elapsed time of the form being timed is
on the order of several seconds. Therefore, the variable ¢m-time is bound to
the return value corresponding to the CM-2 active time, and the result stored

in the vector values represents the instruction/task execution rate of

rate = M . (3)

test —loop
The statistics calculated are used to verify the correctness of the data
gathered. The maximum and the minimum show the range of times collected;
with the minimum giving the nearest to optimal execution time (i.e., each
instruction should always execute in the same number of cpu cycles). The
average time indicates the expected execution time, and when the average

time is considered with the standard deviation, the accuracy of the timings

can be readily deduced. See Section 3.1 for tabulated data values.

2.3 Experiment Execution

The measurements and the experiments have been run with a DEC VAX
8350 as the control unit (front end). Because the control unit is not a single-
user machine, the loading on the VAX can have a direct impact on the
performance of programs executing on the CM-2. Therefore, to reduce this
possibility and to avoid user contention of the CM-2 during normal working

hours, all experiments were run at night.

To facilitate running the experiments at night, the Unix at command was
initially employed unsuccessfully. This lead to the development of the
shellscripts shown in Appendix C. There are two versions of these shellscripts:

one for V4.3 software (old-night), and one for V5.0 software (night).

TR 88.19 -11 - December 1988

The shellscript night (old-night) is similar to the Unix at command. It
accepts as command-line arguments the desired time (24 hour time) of
execution, and compares the entered time to the actual time every 15 minutes.
When the start time is reached, the shellscript CMrun (old-CMrun) loads .
the file (foo) containing the desired LISP forms to be executed and pipes it
into starlisp (old-starlisp). For example, to execute the program specified
in ﬁle foo at midnight:

% night 00 00& .
At midnight or shortly thereafter, the program will be executed with V5.0

software.

TR 88.19 -12 - December 1988

3 Results and Analysis

3.1 Tables

Shown on the following four pages are tables of the initial results
obtained. The first column in each table corresponds to the test number of
each timing experiment. These numbers can be used to locate specific routines
in Appendix C (e.g., time-testXX corresponds to test number XX in final-
syracuse.lisp, and time-XX corresponds to test number XX in one of the
other files (each test has a distinct number)). In addition, a more detailed
description of the tests is included with each timing routine as part of the
comment header. Also, additional description and analysis of the experiments
completed at RIACS >are.>located in Section 3.3 and in Section 3.4. Table 1
reports the results of experiments done at RIACS, and Table 2 reports the
results from experiments run on the CM-1 at Syracuse and the results from

the same experiments run on the CM-2 at RIACS.

TR 88.19 -13 - December 1988
Table 1: CM-2 timing experiments.
CM-2 Timing Experiments - Version 4.3 Software
Tests run with a VAX 8350 front end - 8192 PEs used
All measurements listed in units of milliseconds
Test Instruction Size of | Average Standard Max. Min.
Number Description Used Data Time Deviation Time Time
1 swap cm:send 32 .1686 .0021 1729 1572
2 1 way send cm:send 32 .1668 .0018 1714 1624
3 max dist. cm:send 32 .1689 .0026 1755 .1578
4 inner product *Lisp 32 2.030 .018 2.068 1.945
5 HD =13 *pset 1 1.077 .008 1.081 1.012
5.1 HD =4 *paet 1 .3312 .0003 .3321 .3297
[HD =13 *pset 2 1.094 .004 1.097 1.068
6.1 HD =4 *pset 2 .3368 .0023 .3375 3145
7 HD =13 *pset 4 1.120 .001 1.122 1.114
7.1 HD =4 *paet 4 .3451 .0008 .3458 3432
8 HD =13 *paet 8 1.171 .007 1.174 1.104
8.1 HD = 4 *pet 8 .3630 .0005 .3638 .3607
9 HD =13 *pset 16 1.280 .003 1.282 1.256
9.1 HD =4 *pset 16 .3973 .0008 .3980 3942
10 HD =13 *pset 32 1.160 .007 1.163 1.090
10.1 HD =4 *pset 32 .3660 .0005 .3667 .3646
11 HD =13 *pset 64 1.823 .002 1.825 1.815
11.1 HD =4 *pset 64 5448 .0024 5457 .5218
12.1 HD =1 *paet 80 9372 .0005 .938 9361
12.2 HD =2 *pset 80 .937 .0024. .9381 9146
12.3 HD =3 *pset 80 .9371 .0024 .9381 9142
12.4 HD =4 *pet 80 9372 .001 .938 9354
12.5 HD =5 *pset 80 3.083 .0017 3.088 3.078
12.6 HD =6 *pset 80 3.083 .0017 3.085 3.079
12.7 HD =7 *pset 80 3.081 015 3.085 2.936
12.8 HD =38 *pset 80 3.083 .0018 3.085 3.075
12.9 HD =9 *pset 80 3.083 .0025 3.086 3.054
12.10 HD =10 *paet 80 3.082 .0067 3.085 3.015
12.11 HD =11 *pset 80 3.083 .004 3.088 3.040
12.12 HD =12 *pset 80 3.083 .004 3.088 3.0768
12.13 HD =13 *pset 80 3.083 0.0 3.0868 3.078
13 HD =13 *pset 128 4.678 .007 4.683 4.615
13.1 HD = 4 *pset 128 1.411 0023 1.412 1.389
14 HD =13 *pset 258 8.298 .0118 8.302 8.220
14.1 HD =4 *pset 256 2.495 0.0 2.500 2.491
15 caleulation *Lisp float 5.922 .528 81.140 58.023
19 random random!! 13 1.673 .011 1.699 1.630
20 shffl. exch. *Lisp 32 1.811 .003 1.814 1.787
21 shffl. exch. *Lisp 32 6.111 .039 6.189 5.808
22 s.e., bit shft *Lisp 32 2.401 .0166 2.427 2.308
23 s.e., calc. incl. *Lisp 32 1.694 .041 2.096 1.870
24 shffl. exch. *Lisp 32 1.919 .041 2.024 1.820
25 NEWS, 4 *Lisp 32 .594 .0035 .5985 .5610
28 NEWS, 8 *Lisp 32 1.679 .009 1.885 1.872

TR 88.19 -14 - December 1988

Table 1 (cont.): CM-2 timing experiments.

CM-2 Timing Experiments - Version 4.3 Software - Continued
Tests run with a VAX 8350 front end - 8192 PEs used
All measurements listed in units of milliseconds
Test Instruction | Sizeof | Average | Standard Max. Min.
Number Description PEs Data Time Deviation Time Time
27 Image smoothing *Lisp float 7.184 .028 7.202 7.165
28 PM2I,1=0 *Lisp 32 .3652 0.0 .3652 .3651
28.1 PM2l,I=1 *Lisp 32 .4308 .0003 .4310 43068
28.2 PM2,1=2 *Lisp 32 .8342 .0011 .6350 .6333
28.3 PM2,I=3 *Lisp 32 .8308 .0003 .8312 .8305
28.4 PM2l,I=14 *Lisp 32 1.356 0.0 1.358 1.358
28.5 PM2L,1=5 *Lisp 32 1.358 0.0 1.356 1.358
28.8 PM2[I= 86 *Lisp 32 1.287 0.0 1.287 1.287
28.7 PM2L,1=7 *Lisp 32 1.223 0.0 . 1.223 1.223
28.8 PM2],1=38 *Lisp 32 1.223 0.0 1.223 1.223
28.9 PM2L,I=9 *Lisp 32 1.224 .0005 1.224 1.223
28.10 PM2I, 1= 10 *Lisp 32 1.228 .0008 1.226 1.225
28.11 PM2L, I=11 *Lisp 32 1.159 0.0 1.59 1.159
28.12 PM2I, 1 =12 *Lisp 32 1.159 .0007 1.159 1.158
29 NEWS, 8 *Lisp 32 13.926 .017 13.938 13.913
30 ring *Lisp 32 .3659 .0008 .3663 .3655
31 ring, max inactive *Lisp 32 .3653 .0002 .3654 .3652
32 unsigned + PARIS 32 .0817 .0009 .0848 .0805
33 unsigned x PARIS 32 .9802 .0058 .9835 9238
34 unsigned - PARIS 32 .0892 .0008 .0921 .0869
35 unsigned = PARIS 32 1.212 .020 1.220 1.017
36 fo + PARIS float .556 .0007 .5875 .5542
37 fp - PARIS float .5578 .0038 .5506 .5242
38 fp x PARIS float 534 .0036 .5358 .4988
39 fp ~ PARIS float 1.228 .0015 1.230 1.224
40.1 rev. HD =1 *pset 80 3.079 .004 3.083 3.070
40.2 rev.,, HD = 2 *pset 80 3.078 .005 3.088 3.051
40.3 rev.. HD = 3 *paet 80 3.078 .004 3.083 3.058
40.4 rev., HD = 4 *pset 80 3.077 .018 3.086 2.897
40.5 rev. HD =35 *pset 80 3.078 .005 3.088 3.070
40.6 rev. HD = 6 *pset 80 3.078 .004 3.087 3.059
40.7 rev., HD =7 *pset 80 3.078 .004 3.083 3.065
40.8 rev.,, HD == 8 *pset 80 3.077 019 3.084 2.894
40.9 rev., HD = 9 *pset 80 3.079 .003 3.084 3.070
40.10 rev., HD = 10 *pset 80 3.078 .003 3.084 3.070
40.11 rev.,, HD = 11 *pset 80 3.074 .023 3.083 2.894
40.12 rev., HD = 12 *pset 80 3.075 .022 3.088 2.909
40.13 rev., HD =13 *pset 80 3.074 .024 3.087 2.878
42.1 1PE *pset 80 .388 .002 .392 378
42.2 2PE *pset 80 .585 .003 .570 .652
42.3 3PE *pset 80 .739 .015 745 .603
42.4 4PE *pset 80 914 .014 919 .781
42.5 5PE *pset 80 1.082 .014 1.087 .948
42.6 6 PE *pset 80 1.305 .007 1.313 1.249
42.7 7PE *pset 80 1.484 .016 1.493 1.373
42.8 8 PE *pset 80 1.664 .011 1.673 1.592
429 9 PE *pset 80 1.833 .022 1.843 1.641
42.10 10 PE *pset 80 2.012 .007 2.027 1.418
42.11 11 PE *paet 80 2.197 .011 2.204 2.105
42.12 12PE - *pset 80 2.376 .029 2.386 2.108
42.13 13PE *pset 80 2.546 .031 2.559 2.280
42.14 14 PE *pset 80 2.725 .028 2.738 2.453
42.15 15 PE *pset 80 2.911 .008 2.911 2.898
42.18 18 PE *pset 80 3.088 .017 3.099 2.972

TR 88.19 -15- December 1988

Table 2: Timing comparison of CM-1 [OFA87] versus CM-2

Timing Comparison CM-1 vs CM-2
All measurements listed in units of milliseconds
Test CM-1 execution CM-2 CM-2 CM-2 | CM-2
Number time [OFA87| execution time | std dev max min
1 .306 289 .0042 .2901 .2581
NOT* D 0 N E
3 2.9 2.85 .0286 2.88 2.57
4 2.8 1.34 .0131 1.35 1.22
5 2.4-2.5 3.91 .0053 3.915 3.858
8 2.4-2.9 1.26 .0058 1.264 1.207
7 1.9-2.0 1.44 .0003 1.446 1.438
8 1.85-1.92 1.28 .0012 1.281 1.278
9 NOT D 0 N E
10 NOT D [0} N E
1 2.5-2.8 1.18 .0019 1.183 | 1.169
12 1.6-1.7 1.1 0147 | 1121 977
13 NOT D Lo} N E
14 2.4-2.6 1.18 .0002 1.183 1.179
15 1.3 .4369 .0056 4397 .3818
18 .420 4376 .0023 .4383 .4148
17 2.5-2.8 1.34 .0024 1.349 1.334
18 1.3 1.43 .0015 1.433 1.428
19 1.3 1.43 .0015 1.432 1.331
20 1.7 1.43 .0012 1.433 1.425
21 .869 .930 .0059 .9333 8727
22 1.7 1.43 .0014 1.432 1.419
23 1.7 1.43 .0016 1.431 1.424
24 1.7 1.43 .0095 1.432 1.335
25 1.7 1.43 .0016 1.432 1.423
28 2.9 1.76 .0024 1.764 1.750
27 5.4 1.76 .0037 1.766 | 1.743
28 10.4 2.08 .0083 2.105 2.057
29 20.1 2.24 .0178 2.273 2.111
30 2.1 119 .0155 1.199 1.039
31 1.08 1.12 .0008 1.199 1.193
32 .846 .608 .0004 .6095 .8068
33 192) .441 .0012 L4416 | .4297
34 .268 441 0.0 4419 .4407
35 .469-.589 444 .0005 4442 4424
36 NOT D 0 N E
37 NOT D 0 N E
38 NOT D (o] N E
39 .350-.409 3734 .0005 3744 .3722
40 NOT D (o] N E
41 NOT D (o} N E
42 NOT D 0 N E
43 NOT D (o] N E
44 NOT D 0 N E
45 NOT D 0 N E
46 NOT D 0 N E
47 8.9 6.64 .070 6.745 6.080
48 2.4 2.70 .0o1 2.702 | 2.687
49 2.8 2.85 .004 2.858 2.837
50 3.8 3.70 .007 3.720 3.680

* Tests marked NOT D O N E are those that, while meaningful for the CM-1,
are irrelevant or not possible given the different hardware and software of the

CM-2.

TR 88.19 -16 - December 1988

Table 2 (cont.): Timing comparison of CM-1 [OFA87] versus CM-2

nspl
Timing Comparison CM1 vs CM2, Continued
All measurements listed in units of milliseconds
Test CM-1 CM-2 CM-2 CM-2 | CM-2
Number || execution time | execution time | std dev max min
51 5.9 5.41 .012 5.438 5.388
52 17.8 15.5 1.58 16.05 13.78
53 2300 338 38.2 349.4 197.8
54 .723 .7014 .0038 .7040 .6647
55 871 8647 .0027 .66859 .8377
56 .525 .5077 .0005 .5088 | .5061
57 .671 .6648 .0038 .6661 .6382
58 NOT * D 0 N E
59 NOT D (o] N E
60 NOT D 0 N E
61 NOT D (o] N E
62 NOT D (o] N E
83 .875 .5135 .0028 .515 .4863
64 NOT D (o] N E
65 NOT D o} N E
66 NOT D o} N E
67 NOT D 0 N E
88 NOT D 0 N E
69 NOT D 0 N E
70 NOT D (o} N E
71 .0381 .0430 .0002 0434 .0425
72 .0381 .0430 0.0 .0432 .0428
73 117 .1034 .0005 1037 .0981
74 1.13 1.045 .0012 1.048 1.040
75 1.69 1.707 .0035 1.711 1.676-
78 NOT D o N E

* Tests marked NOT D O N E are those that, while meaningful for the CM-1,
are irrelevant or not possible given the different hardware and software of the

CM-2.

TR 88.19 -17 - December 1988

3.2 Communication Tests Analysis

time-01 and time-02

time-01 and time-02 are the first two experiments designed for the
CM-2. The significance of these two experiments lies not in the knowledge
gained about the CM-2, but in the insight they give to the methodology used

when constructing the experiments.

Prior to conducting these two experiments, the bidirectional
communication capabilities of the CM-2, if any, were unknown to us. To
investigate this problem further, two experiments were used. The first
experiment, time-01, reports the time for the CM-2 to complete bidirectional
communication operation where the active PEs are those satisfying the

following condition

—

self _address mod 16 = 0 . (4)

This ensures that only one PE per chip is active. Each active PE calculates a

destination address as follows
dest_address = self _address @ 16 . (5)

Hence, each active PE sends to a destination PE that is a Hamming distance
of one away through the network. In addition, considering Equation (4) and
Equation (5) above, it is evident that each active PE transmits a message to a

destination PE satisfying the following equation
source_PE_address mod 32 = dest_PE_address mod 32 . (6)

The constraints above create a situation in which each active PE is

TR 88.19 -18 - December 1988

communicating with a single unique PE in the hypercube (i.e., bidirectional
communication). This is shown for a 3-dimensional hypercube in Figure 3

below.

<

Figure 3: Communication pattern for 3-dimensional hypercube

with experiment time-01.

The second test, time-02, is very similar to the first test except only half
of the active PEs from the first test are used in the second test. The active set

of PEs are those satisfying
self —address mod 32 = 0 (7)

and destination addresses are calculated as shown by Equation (5). These
constraints create a situation in the CM-2 in which one-way communication
occurs through the network instead of two-way communication. This is

shown for a 3-dimensional hypercube in Figure 4.

TR 88.19 -19 - December 1988

—

|

Figure 4: Communication pattern for 3-dimensional hypercube

with experiment time-02.

The times reported by test-01 and by test-02 are equal; thus
demonstrating that the CM-2 does have bidirectional communication

capability.

time-03

This test reports the amount of time required to send a 32 bit message
from PE (0) to PE (cm:*user-cube-address-limit* — 1). The time reported by
time-03 is equal to the time reported by time-01 and by time-02. This can
be attributed to the lack of contention for resources in the network. All PEs
are sending to a unique PE and the number of active PEs is small; hence,
there is never more than one message needing to be sent from any single

router at any given instant.

time-06 through time-14

These experiments test communications for two different Hamming

TR 88.19 -20 - December 1988

distances (4 and 13) over a wide range of message sizes (see Graph 1). The
message sizes are all powers of two except for the 80 bit message size that
corresponds to the number of bits in an IEEE Floating Point Standard double
extended precision number(IEE85]. A Hamming distance of four is the largest
Hamming distance possible while maintaining on-chip communications;
whereas, a Hamming distance of thirteen is the maximum Hamming distance

within a hypercube of 8K nodes.

Graph 1: Hamming distance communication experiment,

tests time-06 through time-14.

0.008 —) X
x == mean time, H.d. of 13
» « = mean time, H.d. of 4
0.006 ~ = max. and min. values
\ X
Time 0.004 —
X
0.002 - y :
X X X X X ¢

. [. . 3

0.000 —

a—
—

| | | | | |
1 2 3 4 5 6 7 8

logy (message length in bits)

The size of the message being sent has an affect on the time required to
complete a message transfer. This is to be expected. However, the time
required to transmit messages increases with the message size up to a message
size of 29; at this point the time to transmit a message decreases, and then

starts to rise again. In addition, Graph 1 shows that on-chip communication

TR 88.19 -21- December 1988

is much faster than network communication.

time-12.1 through time-12.13

This group of experiments shows the time required for 80-bit messages -

being sent over varying Hamming distances (see Graph 2).

Graph 2: Hamming distance communication experiment,

tests timel2.1 through time-12.13.

0.003 — X X O X X ¥ ¥ X X

0.0025 —

Time 0.002 —

80 bit messages
x == mean time
0.0015 — | = max. and min. values

0.001 —

X
x
X

17 U1 0T U T
5 6 7 8 910111213

X
LI

3 4

Hamming Distance

To calculate a destination address that is a Hamming distance of Y from a
source address X, the lower Y bits of X are inverted. This explains the two
levels shown Graph 2. The method for calculating destination addresses
mentioned above yields on-chip communications for Hamming distances
between 1 and 4; whereas, off-chip communications arise for Hamming

distances between 5 and 13. Again this shows the speed advantage of on-chip

communications versus off-chip communications.

TR 88.19 -22- December 1988
time-28.1 through time-28.12

This experiment tests the ability of the CM-2 hypercube network to

simulate the PM2I network [SIE85]. The results are shown in Graph 3 and in

Graph 4.
Graph 3: PM2I simulation (V4.3 software),
tests time-28.1 through time-28.12.
3.519 -
~”
("') N
o a7
T
O 19231
@
<
1.184 4
& s
- e
-
- .
[m & .
10
12 e (’QO
I >

TR 88.19 -23 - December 1988

Graph 4: PM2I simulation (V5.0 software),

tests time-28.1 through time-28.12. .

time (sec) (X10~3)

For small values of I, source PEs are sending to destination PEs which
are are separated by a small absolute distance (i.e., 1, 2, 4 away). A smaller
absolute distance implies more overall on-chip communications; hence, a
smaller total communication time. This explains the shape of Graph 3 and of

Graph 4 for small values of I.

The shape of the graph for the remaining values of I can be attributed to
several factors. First, for greater values of I, more off-chip communication will
occur. Secondly, the Hamming distance between the source PE and the

destination PE affects the communication time. Recall that the PM2I network

TR 88.19 -24 - December 1988

adds '+ 2! to every source PE address to calculate every destination PE
address. Adding 2l to a bingry number entails adding 1 at position I 4 1. If
the bit in location I + 1 is a zero, a carry into bit position I + 2 does not
occur, and the Hamming distance between the source/destination PEs is one.

For example, adding one to eight yields:

01000
+00001

01001

However, if a one is present in bit position I + 1, a carry occurs into bit
position I + 2. Depending on the number of ones in the higher bit positions,
this carry-propagate could continue out to the most significant bit (MSB).

For example, adding one to seven yields:

00111 .
+00001

01000

From the example above, it is apparent that each carry-propagate increases
the Hamming distance between source/destination PEs by one. Consequently,
the maximum on the two graphs arises when the carry-propagate affects the

most source/destination pairs with the greatest Hamming distance separation.

It is obvious that the maximum Hamming distance between any one
source/destination pair occurs when I = 4 because the greatest number of bits
can be changed by a ripple carry from this position. However, this does not

explain why the graphs drop off as I increases.

The average ripple carry distance when adding 1 to an n bit number is
bounded above by logy(n) [HWA79]. Therefore, an inverse relationship exists

between I and n, and the largest average ripple carry distance occurs for I =

TR 88.19 -25- December 1988

1. However, the ripple carry for small values of I affect only the lower order
bits. This implies that most of the communicationé are occurring between
PEs located on chip. For I greater than or equal to 4, the bits effected by the
ripple carry are those corresponding to paths between chips. This explains the
gradual increase in communication time up to I = 4, and the drop off in the
graph for values of I greater than 4 can be attributed to a decrease in the

average ripple carry distance (i.e., logy(n) decrease as n decreases).

When comparing the PM2I simulation between the V5.0 software and the
V4.3 software, it is immediately obvious that both graphs have the same
shape. However, the communication times between corresponding operations
are not equal. The V4.3 software transmits smaller messages faster than the
V5.0 software, and the V4.3 softh;re transmits larger messages much slower
than the V5.0 software. This demonstrates that the V5.0 software transmits

messages with more consistent performance than the V4.3 software.

time-30 and time-31

For these two tests, all the PEs are logically connected in a ring
configuration, and each PE sends to the next PE in the ring. The PEs are
numbered in the ring according to a binary reflected gray code [TFC86|.
When this type of ordering is done in a hypercube network, neighboring PEs
in the ring are separated by a Hamming distance of only one. Hence, only one
dimension of the hypercube need be traversed before a message arrives at its
destination. It is interesting to note that the time for ring communication is

the same regardless if the ring is closed or if the ring is broken between PE 0

TR 88.19 - 26 - December 1988

and the PE max-PE-address.

time-40

This is the companion test to test-12. In test-12, the source addresses
are modified from the least significant bit to the most significant bit when
calculating destination addresses; whereas, in test-40, the source addresses are

modified from the msb to the Isb when calculating destination addresses.

Graph 5 displays the results of this test.

Graph 5: Reverse Hamming distance test,

test time-40.

3.25

x*x X X X X X I

3.00 —
Time
(ms)
275 -
x == mean time
= max. and min. values
2.50 -~

L LU
5 6 7 8 910111213

17T 11
1 23 4
Hamming Distance

When comparing Graph 5 with Graph 2 it is apparent that the
discontinuity in Graph 2 is not present in Graph 5. This is a direct result of

the method used to calculate the destination addresses. Since, the destination

addresses are calculated by applying the exclusive OR operation to the source

TR 88.19 - 27 - December 1988

address bits from the most significant bit to the least significant bit, all the

communications are occurring between PEs located on different chips.

It is interesting to note that in both Graph 2 and in Graph 5, the
communication time for different Hamming distances are equivalent. This is a
result of the communication pattern occurring in the CM-2. In any given
occurrence & of the Hamming distance test, each source/destination PE pair is
separated by a Hamming distance of . Hence, each message must traverse «
dimensions of the hypercube. The communication p;attern of this test is a
bijection on the set of source PE addresses. This implies equal loading
(number of messages) at each point during the communication steps. Also,
the type of routing algorithm (i.e., non-deterministic) has an effect on the

communication time.

time-42

This experiment tests the effect the number of active PEs per chip has on

off-chip communication time (see Graph 6).

Graph 6: PE communicating off-chip,

test time-42.

TR 88.19 -28 - December 1988

0.003 -~ x = mean time < ¥
= max. and min. values T
0.002 - ¥ T
Time « ¥
(ms) x ¥
0.001 — ¥
X ¥
X
x
0.000 <
Tr1 rTrrrrirryriernriyuiri
1 3 5678 910111213141516

As would be expected, the number of active PEs communicating off-chip does
have a significant influence over the communication time. After analyzing the
data it is apparent that the relationship between the nurﬁber of PEs per chip
involved in the communication and communication time is almost linear. In
fact by using linear regression, this relationship can be approximated with the

equation

time = 180.6 x 107® x (# active PEs/chip) + 204.4 x 10™% . (8)

This relationship occurs because as the the number of PEs communicating
off-chip increase, the time to service all the requests increase. Hence, the total

communication time increases.

TR 88.19 -29 - December 1988

3.3 Algorithm Tests Analysis

time-04
The equation used for the inner product test is given below

i=n-1
IP = Z aibi . (9)

i=0
Each PE,; contains both a; and b;. The product, a;b;, is computed by each
PE, and then the sum-of-products is calculated using the *Lisp command
scan!! with the result being stored in the PE with address em:*user-cube-
address-limit — 1. The inner product is a good algorithm to choose for testing
the CM-2 because it lends itself nicely parallelization on an SIMD machine.
Multiplication, addition, and recursive doubling are all features of a parallel

algorithm that are present in this test.

time-27

An image can be represented as a 2-dimensional array of pixels. Each
pixel in the image is assigned a gray level and an (x,y) coordinéte position
within the image. To remove extraneous noise from the picture, image
smoothing is performed. This is done by computing the average gray level for
each non-border pixel and its eight nearest neighbors. Therefore, if each pixel
in the image with coordinates i and j has a gray level aséociated with it, h(i,j),

then the new gray level for the pixel at position (i,j) is

.. 1i=1 j=1 ..
hnew(l’.]) = ‘9— E hold(lr.]) . (10)
=1 jm—1

If h(i,j) is an integer (which it should be), then Equation (8) illustrates that

TR 88.19 -30- December 1988

Illiac-type communication [SIE85|, integer addition, and integer division are

tested with this algorithm.

TR 88.19 -31- December 1988

4 Conclusion

The performance analysis and benchmarking of supercomputers is an
area in which further investigation is necessary. This paper presents a
methodology designed for the analysis of a specific parallel processing machine
(the CM-2). The results of these tests should help characterize aspects of the
performance of the CM-2, and in turn, aid in the future development of

parallel processing computers.

Future work will include the simulation of other interconnection
networks. Specifically, the PM2I network and the shuffle-exchange network
will be further investigated. Both of these networks embody regular
communication patterns which are frequently used in parallel algorithms. A
more analytical analysis of the PM2I simulation will be conducted to better
characterize the contention occurring in the CM-2. In addition, simulations of
the shuffle network have been completed for both versions of the CM-2
software, and several 3-dimensional plots of the results have been made. More
analysis of these results are needed. Finally, the floating point hardware was
recently installed in the CM-2 at NASA Ames, and it will be interesting to
determine what effects this has on the execution time of floating point

operations.

TR 88.19

-32- December 1988

5 References

[HIL85)

[EES5)

(OFA87]

[SIESS]

[TFC86]

[TM86]

[TM87

[TMS87b)

[HWA79]

Hillis, W. Daniel, The Connection Machine, The MIT Press,
Cambridge, Massachusetts, 1985, 190pp.

IEEE Standard for Binary Floating-Point Arithmetie, The Institute
of Electrical and Electronic Engineers, New York, 1985, 18pp.

O'Farrell, Report on Instruction Timing for the Connection
Machine (Model CM-1), Syracuse Technical Report 87-1, Syracuse
University, Syracuse, New York, 1987.

Siegel, H.J., Interconnection Networks for Large-Scale Parallel
Processing, D.C. Heath and Company, Lexington, Massachusetts,
1985, pp. 23-24.

T. F. Chan and Y. Saad, “Multigrid Algorithms on the Hypercube
Multiprocessor,”” IEEE Transactions on Computers, November
1986.

Introduction to Data Level Parallelism, Technical Report 86.14,
Thinking Machines Corp., Cambridge, Massachusetts, April 1986,

60pp.

Model CM-2 Technical Summary, Technical Report HAS87-4,
Thinking Machines Corp., Cambridge, Massachusetts, April 1987,

60 pp.

Connection Machine System Software Documentation, five
volumes: Connection Machine System Overview, Connection
Machine System Front End: VAX ULTRIX, Connection Machine
Front End: Symbolies, Connection Machine Programming in C¥,
Connection Machine Programming in *Lisp.

Computer Arithmetic: Principles, Architecture, and Design, John
Wiley & Sons, New York, 1979, pp. 75-76.

TR 88.19 - 33 - December 1988

APPENDICES

TR 88.19 - 34 - December 1988

Appendix A

Performance Measurement Skeleton

TR 88.19

-35-

(defvar *data*)
(defvar *fp*)

(defun enable-all ()
(cm:move-constant-always cm:context-flag 1 1)
(cm:move-constant-always cm:overfiow-flag 0 1))

(*defun concentration (address-pvar)
(declare (type {field-pvar cm:*cube-address-length*) address-pvar))
(*let ({revd-count))
(declare (type (field-pvar 16) revd-count))
(®all
(*set rcvd-count (It (the fixnum 0})))
(*pset :add (1! (the fixnum 1)) rcvd-count address-pvar)
(let {(n-a-p (¢m:global-count cm:context-flag)))
(format *fp* " number of active processors: "D~ %" n-a-p)
(*all
(*when {/=!! rcvd-count (1! (the fixnum 0)))
(let* ((n-receiving {cm:global-count cm:context-flag))
(total-sum (*sum rcvd-count))
(max-rcvd (*max rcvd-count))
(av-received (/ (Roat total-sum) (float n-receiving))))
{format *fp* " number receiving: "D (", 1F%)"%" n-receiving
* 100.0"(/ n-receiving (ﬂoat n-a-p))))"
(format *fp* " average received: ~,2F %" av-received)
(format *fp* " max received: "D~%" max-revd)))))))

{defun statistics (values time-loop)
(let {(average 0) ’

(std-dev 0)
(sum 0)
(sqr-sum 0)

maximum 0)
minimum 0}
(temp ~ 0))
(dotimes (i time-loop)
(setq temp (vector-pop values))
{format *data* ""F~%" temp)
(setq sum (+ sum temp))
(setq sqr-sum (+ sqr-sum (* temp temp)))
(setq maximum (max maximum temp})
(if(=1i0)
(setq minimum temp))
(setq minimum (min minimum temp)))
(setq average (/ sum time-loop))
{setq std-dev (sqrt (- (/ sqr-sum (- time-loop 1))
(/ (* time-loop (* average average))(- time-loop 1)})))
{format *fp* " Average: “f"%" average)
(format *fp* " Standard Deviation: "I %" std-dev)
(format *fp* " Maximum: “f~%" maximum)
(format *fp* " Minimum: “f" %" minimum)))

i Timing #

iiv Date

ii» Written by: David Myers

;;; Description: This is the basic skeleton used for the tests.
;i1 Active Processors:

;33 Size of Data Used:

ngefun time-?? (time-loop test-loop)
format *fp* ""%SHORT DESCRIPTION~%")
format *data* ""%SHORT DESCRIPTION"%")
(*all
(let ((values 0))
(setq values (make-array '(100) :fill-pointer 0))

;: Test set-up area

"

(dotimes (i time-loop)
format t "“d"%" i)
multiple-value-bind (a cm-time b ¢)

December 1988

Appendix A: Performance Measurement Skeleton

TR 88.19 - 36 - December 1988

(em:time
(dotimes (j test-loop)

:: Instruction to be timed

:return-statistics-only-p)
(vector-push {/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop)))))
(defun main ()
(setq *fp* {open "misc3-stats” :direction :output))
(setq *data® (open "misc3-data” :direction :output))
(time-?? 100 XXXX)
(close *data*)
(close *fp*))

Appendix A: Performance Measurement Skeleton

TR 88.19 -37 - December 1988

Appendix B

Communication Tests

TR 88.19 - 38 - December 1988

;5 Timing #1

i 6/29/88

ii Written by: David Myers

i1+ Description: This program tests the bidirectional communication
e capabilities within the CM2.

i Active Processors: PE# mod 16 = 0

i3+ Size of data used: 32 bit unsigned integers

(*defun time-1 (time-loop test-loop)
(format *fp* "time-1"%")
(format *data® "time-1"%")
(let {{values 0))
(enable-all)
(setq values (make-array '(100) :fll-pointer 0))
*all
(*let ((send (!! (the Axnum 2000)))
(s-addr (1! (the fixoum 0)))
{receive (! (the fixnum 0))))
(declare (type (eld-pvar 32) send))
(declare (type (field-pvar 32) receive))
(declare (type (Beld-pvar cm:*cube-address-length*) s-addr))
(*when (=!! (mod!! (the (pvar (unsigned-byte cm:*cube-address-length*))
(self-address!!))(!! (the fixaum 16))(!! (the fixnum 0)))
(*set s-addr (logxor!! (the (pvar (unsigned-byte
cm:*cube-address-length*))(self-address!!))(!! (the fixnum 16))))
"
;3 Instruction to be timed.

(dotimes (i time-loop)
(format t "“d"%" i)
(multiple-value-bind (a cm-time b ¢)
(em:time
(dotimes (i test-loop)
with-paris-from-*lisp
cm:send (pvar-location receive) (pvar-location s-addr)
(pvar-location send) 32)))
:return-statistics-only-p t)
{vector-push (/ cm-time test-loop) values)))
(concentration s-addr)
(statistics values time-loop))))))

+;» Timing #2

;i 6/29/88

i3; Written by: David Myers

;3 Description: This program does the same test as Timing #1
HH except the communications are only one-way.

iy Active Processors: PE# mod 32 = 0

;37 Size of data used: 32 bit unsigned integers

(*defun time-2 (time-loop test-loop)
(format *fp* "time-2"%"
{format *data® "time-2"%")
(let ((values 0))
(enable-all)
setq values (make-array ’(100) :flll-pointer 0))
*all
(*let ((send (1! (the Sxnum 2000)))
(s-addr (1! {the fixaum 0)))
(receive (1! (the ixnum 0))))
declare (type (feld-pvar 32) send))
declare (type (Geld-pvar 32) receive))
(declare (type (field-pvar em:*cube-address-length*) s-addr))
(*when (=!! (mod!! (the (pvar (unsigned-byte cm:*cube-address-length*))
(self-address!t))(!! (the ixnum 16)))(!! (the fixnum 0)))
(*set s-addr (logxor!! (the (pvar (unsigned-byte
cm:*cube-address-length*))(self-address!))(!! (the fixaum 186))))

:: Instruction to be timed.
"
(dotimes (i time-loop)

format t "~"d~%" i)
multiple-value-bind (s em-time b c)

Appendix B: communication-test.lisp

TR 88.19 -39 - December 1988

(cm:time
(dotimes (i test-loop)
(with-paris-from-*lisp
(cm:send (pvar-location receive) (pvar-location s-addr)
(pvar-location send) 32)))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(concentration s-addr)
(statistics values time-loop))})))

:;; Timing #3

i Written by: David Myers

; Description: This program reports the time is take to send

a message from PE 0 to PE cm:*user-cube-address-limit*
;37 Active Processor: PEO

i1+ Size of data: 32 bit unsigned integers

(*defun time-3 (time-loop test-loop)
(format *fp* "time-3"%")
Efon(:zat ‘dah)‘) "time-3"%")
let ({values 0
(enable-all)
Eaetq values (make-array ’(100) :6il-pointer 0))
*all
(*let {(send (1! (the fixaum 2000)))
(s-addr (1! (the fixnum 0)))
(receive (!! (the fixnum 0))))
(declare (type (feld-pvar 32) send))
(declare {type field-pvar 32) recelve))
(dectare (type (field-pvar cm:*cube-address-length*) s-addr))
(*when (=!! (the (pvar (unsigned-byte cm:*cube-address-length*))
(self-address!!))(1! (the ixnum 0)))
(*set s-addr (logxor!! (the (pvar (unsigned-byte
cm:*cube-address-length*))(self-addresst!))
(!t (the ixnum (- cm:*user-cube-address-limit* 1)))))

:: Instruction to be timed.

(dotimes (i time-loop)
(format ¢ "~d"%" i)
(multiple-value-bind {a cm-time b ¢)
(em:time
(dotimes (i test-loop)
with-paris-from-*lisp
cm:send (pvar-location receive) (pvar-locatlon s-addr)
(pvar-location send) 32)))
:return-statistics-only-p t)
(vector-push (/ cr-time test-loop) values)))
(concentration s-addr)
(statistics values time-loop))))))

i+ Timing #20-2

i 7/18/88, 9/17/18

;77 Written by: David Myers

; Description: This program reports the time it take the connection
machine to simulate the shuffie-exchange from code
written in *lisp. The calculation of the destination
address is not included in this timing.

i3 Active Processors: All

,;; Size of Data Uled 2 bit unisigned integers

(*defun time-20-2 (time-loop test-loop)
(format *fp* "~%Timing 20: 2 bit msgs."%")
{format *data® "~ %Timing 20: 2 bit msgs."%")
(et {(values 0)
(index (/ test-loop 10)))
setq values (make-array *(100) :8ll-pointer 0))
*all
(*let ({dest-address (It (the ixnum 0)))
(temp (the (ﬁeld-pvu cm:*cube-address-length*)
(self-address!t)
(data-sent (!t (the fixaum 3)))
(data-recvd (!t (the fixnum 3)))

Appendix B: communication-test.lisp

TR 88.19

- 40 -

(number-pes (! (the fixnum cm:*user-cube-address-limit*)}))
(declare (type (feld-pvar (+ 1 cm:*cube-address-length*)) dest-address))
{declare (type (field-pvar (+ 1 cm:*cube-address-length*)) temp))
(declare (type (Geld-pvar (+ 1 cm:*cube-address-length*)) number-pes))
(declare (type (field-pvar 2) data-sent))

{declare (type (field-pvar 2) data-recvd))
(dotimes {k (- cm:*cube-address-length* 1))
{format *fp* " ~d way shuffle.”%" (+ k 1))
dotimes {calc {+k 1}
(¥if (<! te» (/1 number-pes (1 (the Sxpum 2)))
if (<! ternp number-pes {!! e ixnum
(*set temp (mod!! (*!! temp (!! (the fixoum 2))) number-pes))
(*set temp (mod!! (+!! (! {the ixnum 1))(*!! temp
{1 {the fixnum 2)))) number-pes})))
(*set dest-address temp)
(d(otix;xell(i tinl'l&l:opg (time b &
multiple-value-bind (a cm-time b ¢
(cm:time
(dotimes (j index)
(*pset :no-collisions data-sent data-recvd dest-address)
(*pset :no-collisions data-sent data-recvd dest-address)
(*pset :no-collisions data-sent data-recvd dest-address)
(*paet :no-collisions data-sent data-recvd dest-address
(*pset :no-collisions data-sent data-recvd dest-address
(*pset :no-collisions data-sent data-recvd dest-address
(*pset :no-collisions data-sent data-recvd dest-address
(*pset :no-collisions data-sent data-recvd dest-address
(*pset :no-collisions data-sent data-recvd dest-address
(*pset :no-collisions data-sent data-recvd dest-address))
:return-statistics-only-p t)
((vector-pullid(/ cr:;time ;.elt-loop) values)))
concentration dest-address
(statistics values time-loop)
(*set temp (the (field-pvar cm:*cube-address-length*)

(self-address!!))))))))

; Timing #20-4

; 7/18/88,9/17/18

; Written by: David Myers

; Description: This program reports the time it take the connection

machine to simulate the shuffle-exchange from code
written in *lisp. The calculation of the destination
address is not included in this timing.

; Active Processors: All
; Size of Data Used: 4 bit unisigned integers

(*defun time-20-4 (time-loop test-loop)
(format *fp* "~ % Timing 20: 4 bit mags."%")
(format *data* "% Timing 20: 4 bit msgs."%")
(let ((values 0)

(index {/ test-loop 10)))

(setq values (make-array '(100) :fill-pointer 0))
(*all

(*let ((dest-address (! (the fixnum 0)))
(temp (the {field-pvar cm:*cube-address-length®)
(self-address!t)))
data-sent (!! {the fixnum 15)))
data-recvd (!! (the fixnum 15)))
number-pes (! (the fixnum cm:*user-cube-address-limit*))))
+1 cm:‘cnbenddruplen(th‘; dest-address))
(declare {type (fGeld-pvar (+ 1 cm:*cube-address-length*)) temp))
{declare (type (Geld-pvar (+ 1 cm:*cube-address-length*)) number-pes))
declare {type (field-pvar 4; data-sent))
declare (type (field-pvar 4) data-recvd))
{dotimes (k (- cm:*cube-address-length® 1))
format *fp* " ~d way shuffie."%" (+ k 1))
dotimes (calc (+ k 1))
{*if (<! temp (/! numbez-pes (1 (the fixnum 2))))
(*set temp %mod!! {*!! temp (!! (the Sxnum 2))) number-pes))
(*set temp (modl! (+!f (! (the fixaum 1))(*!! temp
(1! (the ixoum 2)))) number-pes))))
*set dest-address temp)
dotimes (i time-loop)
(multiple-value-bind (a cm-time b c)

(declare (type (feld-pvar

December 1988

Appendix B: communication-test.lisp

TR 88.19

- 41 - December 1988

(em:time
(dotimes (j index)
(*pset :no-collisions data-sent data-recvd dest-address)
(*pset :no-collisions data-sent data-recvd dest-address
(*pset :no-collisions data-sent data-recvd dest-address
(*pset :no-collisions data-sent data-recvd dest-address)
(*pset :no-collisions data-sent data-recvd dest-address)
(*pset :no-collisions data-sent data-recvd dest-address)
(*pset :no-collisions data-sent data-recvd dest-address)
(*pset :no-collisions data-sent data-recvd dest-address)
{*pset :no-collisions data-sent data-recvd dest-address)
(*pset :no-collisions data-sent data-recvd dest-address))
:return-statistics-only-p t)
((vect:)r-gulh d(/ tcm;:.iime)test-loop) values}))
concentration dest-address
(statistics values time-loop)
(*set temp (the (field-pvar cm:*cube-address-length*)
(self-address!t)))))))}
i Timing #20-8
i 7/18/88,9/17/18
iy Written by: David Myers
;;; Description: This program reposts the time it take the connection
N machine to simulate the shuffie-exchange from code
0w written in *lisp. The calculation of the destination
HR address is not included in this timing.
i;1 Active Processors: All
i+ Size of Data Used: 8 bit unisigned integers
t'*'defun time-20-8 (time-loop test-loop)
(format *fp* "~%Timing 20: 8 bit msgs.”%")
(format *data* "~% Timing 20: 8 bit msgs.”%")
(let {{values 0)
(index (/ test-loop 10)))
(setq values (make-array '(100) :fill-pointer 0))
(*all
(*1et ((dest-address (1! (the fixaum 0)))
(temp (the (field-pvar cm:*cube-address-length*)
(self-address!!)))
(data-sent (random!! (!! (the fixnum (ash 1 8))))}
(data-recvd (random!! (! (the fixnum (ash 1 8)))))
(number-pes (!! {the fixnum cm:*user-cube-address-limit*))))
(declare (type (field-pvar (+ 1 cm:*cube-address-length*)) dest-address))
(declare (type (Beld-pvar (+ 1 cm:*cube-address-length*)) temp))
(declare (type (field-pvar (+ 1 cm:*cube-address-length*}) number-pes))
(declare (type (Beld-pvar 8) data-sent))
(dectare (type (Bield-pvar B) data-recvd))
(dotimes (k (- cm:*cube-address-length* 1))
gortr.nat *(fp‘i "(;dkvﬁ)y shuffle.” %" (+ k 1))
otimes (calc
(*if (<!! temp (/! number-pes (!! (the fixnum 2))))
(*set temp (mod!! (*!! temp (!t (the fixnum 2))) number-pes))
(*set temp (mod!! (-H! (It (the fixnum 1))(*!! temp
(oot d t-;dd(" (t:e ﬂx)num 2)))) number-pes))))
set des ress temp,
(dotimes {i time-loop)
(multiple-value-bind (a cm-time b ¢)
(cm:time
(dotimes (j index)
*pset :no-collisions data-sent data-recvd dest-address
*pset :no-collisions data-sent data-recvd dest-address
*pset :no-collisions data-sent data-recvd dest-address
*pset :no-collisions data-sent data-recvd dest-address
*pset :no-collisions data-sent data-recvd dest-address
*pset :no-collisions data-sent data-recvd dest-address
*pset :no-collisions data-sent data-recvd dest-address
*pset :no-collisions data-sent data-recvd dest-address
*pset :no-collisions data-sent data-recvd dest-address
*pset :no-collisions data-sent data-recvd dest-address))
:return-statistics-only-p t)
(vector-push {/ cm-time test-loop) values)))
concentration dest-address)
statistics values time-loop)

Appendix B: communication-test.lisp

TR 88.19

-~ 42 - December 1988

(*set temp (the (feld-pvar cm:*cube-address-length®)

;s Timing #20-16

(self-address!!))))))))

;i 7/18/88,9/17/18

135 Written by:

David Myers

;3 Description: This program reports the time it take the connection
H machine to simulate the shuffle-exchange from code

HH written in *lisp. The calculation of the destination

i address is not included in this timing.

;35 Active Processors: All

;++ Size of Data Used: 18 bit unisigned integers

(*defun.time-20-16 (time-loop test-loop)
(format *fp* "~%Timing 20: 16 bit msgs.”%")

{format *data* "~

(let ((values 0)

%Timing 20: 16 bit msgs.”%")

(index (/ test-loop 10))) '
(setq values (make-array '(100) :fill-pointer 0))

*all

(*let ((dest-address (!t (the fixnum 0)))
(temp {the (field-pvar cm:*cube-address-length*)

(self-address!!)))

(data-sent (random!! {!! (the fixaum (ash 1 18)}}}))

(data-recvd (random!! (!! (the fixnum (ash 1 16)))))

(number-pes (!t (the ixnum cm:*user-cube-address-limit*))))
(declare (type (field-pvar (+ 1 cm:*cube-address-length*)) dest-address))
(declare (type (field-pvar (+ 1 cm:*cube-address-length*)} temp))
(declare {type (field-pvar (+ 1 cm:*cube-address-length*)) number-pes))
{declare (type (field-pvar 16; data-sent))

(declare (type (field-pvar 16
(dotimes (k (-

data-recvd))
cm:*cube-address-length® 1))

format *fp* " ~d way shuffle." %" (+ k 1))
dotimes (calc (+ k 1))
{*if (<! temp (/!! number-pes (!! (the fixnum 2))))

(*set temp (mod!! (*!! temp (I! (the fixnum 2))) number-pes))
(*set temp (mod!!

+!! (1! (the fixnum 1))(*!! temp
11 (the fixnum 2)))) number-pes))))

(*set dest-address temp)
{dotimes (i time-loop)
(multiple-value-bind (a cm-time b c)

(cm:time

(dotimes (j index)

(*pset
(*pset
(*pset
(*pset
(*pset
(*paet
(*pset

(*pset

:no-collisions data-sent data-recvd dest-address)
:no-collisions data-sent data-recvd dest-address)
:no-collisions data-sent data-recvd dest-address)
:no-collisions data-sent data-recvd dest-address)
:no-collisions data-sent data-recvd dest-address)
:no-collisions data-sent data-recvd dest-address)
:no-collisions data-sent data-recvd dest-address)
:no-collisions data-sent data-recvd dest-address)
:no-collisions data~sent data-recvd dest-address)
:no-collisions data-sent data-recvd dest-address))

:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
- (concentration dest-address)
(statistics values time-loop)
{*set temp (the (feld-pvar cm:*cube-address-length*)

©' Timing #20-32

(self-address!))))))))

5 7/18/88, 9/17/18

; Written by:

David Myers

;;; Description: This program reports the time it take the connection

H1 machine to simulate the shuffie-exchange from code
H1 written in *lisp. The calculation of the destination
w address is not included in this timing.

i;; Active Processors: All

;i; Sise of Data Used: 32 bit unisigned integers

t,"defun time-20-32 (time-loop test-loop)
format *fp* "~%Timing 20: 32 bit msgs.”%")
format *data* "~%Timing 20: 32 bit msgs."%")

Appendix B: communication-test.lisp

TR 88.19 - 43 - December 1988

(let {{values 0)
(index (/ test-loop 10)))
:etq values (make-array '(100) :fill-pointer 0))
all
{*let ((dest-address (! (the fixnum 0)))
(temp (the (feld-pvar cm:*cube-address-length*)
(self-address!!)))
(data-sent (random!! (!! (the fixnum (ash 1 32)))))
(data-recvd (random!! (!! (the fixnum (ash 1 32)))})
(number-pes (! (the fixnum cm: *user-cube-address-limit*})))
{declare (type (field-pvar (+ 1 cm:*cube-address-length*)) dest-address))
(declare (type (feld-pvar (+ 1 cm:*cube-address-length*)} temp))
(declare (type (field-pvar (+ 1 em:*cube-address-length*)) number-pes))
(declare (type (field-pvar 32) data-sent))
(declare (type (feld-pvar 32) data-recvd))
(dotimes (k (- em:*cube-address-length* 1))
(format *fp* " “d way shuffie.”%" {+ k 1))
(dotimes (cale (+ k 1))
(*if (<!! temp (/!! number-pes (!! (the fixnum 2))))
(*set temp {mod!! (*!! temp (!t (the fxnum 2))) number-pes))
(*set temp (mod!! (+!! {!! (the fixnum 1))(*!! temp
(1! (the fixaum 2)))) number-pes))))
(*set dest-address temp)
(dotimes (i time-loop)
(multiple-value-bind (a cm-time b ¢)
(cm:time
(dotimes (j index)
(*pset :no-collisions data-sent data-recvd dest-address)
(*pset :no-collisions data-sent data-recvd dest-address)
(*pset :no-collisions data-sent data-recvd dest-address
(*pset :no-collisions data-sent data-recvd dest-address
(*pset :no-collisions data-sent data-recvd dest-address)
(*paet :no-collisions data-sent data-recvd dest-address)
(*pset :no-collisions data-sent data-recvd dest-address)
(*pset :no-collisions data-sent data-recvd dest-address)
*pset :no-collisions data-sent data-recvd dest-address)
*pset :no-collisions data-sent data-recvd dest-address))
:return-statistics-only-p t)
(vector-push {/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop)
(*set temp (the (field-pvar cm:*cube-address-length*)
(self-address!!))))))))

;37 Timing #20-64

i 7/18/88, 9/17/18

;i Written by: David Myers

;;; Description: This program reports the time it take the connection
machine to simulate the shuffie-exchange from code
written in *lisp. The calculation of the destination

W address is not included in this timing.

;i Active Processors: All

i1s Sise of Data Used: 64 bit unisigned integers

(*defun time-20-64 (time-loop test-loop)
(format *fp* "~%Timing 20: 84 bit msgs.”%")
format *data* "~%Timing 20: 64 bit msgs.”%")
let ((values 0)
index (/ test-loop 10)))
:etq values (make-array '(100) :fill-pointer 0))
all
(*let ((dest-address (1! (the fixnum 0)))
(temp (the (feld-pvar cm:*cube-address-length®)
(self-address!!)))

data-sent (random!! (!! (the fixnum (ash 1 64)))))

data-recvd (randomt! (!! (the fixnum (ash 1 84))})))

(number-pes (! (the ixnum cm:*user-cube-address-limit*))))
declare (type (feld-pvar (+ 1 cm:*cube-address-length*)) dest-sddress))
declare (type (feld-pvar (+ 1 cm:*cube-address-length*)) temp))
declare (type (field-pvar (+ 1 cm:*cube-address-length*)) number-pes))
declare (type (field-pvar 64§ data-sent))
declare (type (field-pvar 84) data-recvd))
dotimes (k (- cm:*cube-address-length* 1))

Appendix B: communication-test.lisp

TR 88.19 - 44 -

(format *fp* " ~d way shuffle.”%" (+ k 1))
(dotimes (calc {+ k 1))
(*if (<" temp (/! number-pes (!t (the fixnum 2))))
(*set temp (mod!! (*!! temp (! (the fixaum 2))) number-pes))
(*set temp {mod!t (+!! (!! (the ixnum 1))(*!! temp
(1! (the fixnum 2)))) number-pes})))
(*set dest-address temp)
{dotimes (i time-loop)
(multiple-value-bind (a cm-time b ¢}
(em:time
{dotimes (j index)
(*pset :no-collisions data-sent data-recvd dest-address)
(*pset :no-collisions data-sent data-recvd dest-address)
(*paet :no-collisions data-sent data-recvd dest-address)
(*pset :no-collisions data-sent data-recvd dest-address
(*pset :no-collisions data-sent data-recvd dest-zddreug
(*pset :no-collisions data-sent data-recvd dest-address)
(*pset :no-collisions data-sent data-recvd dest-address
(*pset :no-collisions data-sent data-recvd dest-addreslg
(*pset :no-collisions data-sent data-recvd dest-address)
(*pset :no-collisions data-sent data-recvd dest-address))
:return-statistics-only-p t)
{vector-push {/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop)
(*set temp (the (field-pvar cm:*cube-address-length*)
(self-address!t})}})}}))
i1i Timing #20-80
i 7/18/88,9/17/18
i Written by: David Myers
;3 Description: This program reports the time it take the connection
0w machine to simulate the shuffie-exchange from code
written in *lisp. The calculation of the destination
HA address is not included in this timing.
;i Active Processors: All
;33 Size of Data Used: 80 bit unisigned integers

”"y
(*defun time-20-80 (time-loop test-loop)
(format *fp* "~%Timing 20: 80 bit mlgl.'%'%
(format *data* "~ %Timing 20: 80 bit msgs.”%")
(let {(values 0)
(index (/ test-loop 10)))
(setq values {make-array ’(100) :fill-pointer 0))
(*all
(*let ((dest-address (! (the fixnum 0)))
(temp (the (field-pvar cm:*cube-address-length*)
(self-addresslt)))
(data-sent (random!! (!t (the fixnum (ash 1 80)))))
(data-recvd (randoml! (! (the fixnum (ash 1 80)})))
(number-pes (!! (the fixnum cm:*user-cube-address-limit*))))
(declare (type (field-pvar (+ 1 cm:’cubo-addreu-length*); dest-address))
{declare (type (field-pvar (+ 1 cm:*cube-address-length*)) temp))
(declare (type (field-pvar (+ 1 cm:*cube-address-length®)) number-pes))
(declare (type (field-pvar 80) data-sent))
(declare (type (field-pvar 80) data-recvd))
{dotimes (k (- cm:*cube-address-length® 1))
format *fp* " ~d way shuffle.”%" (+ k 1))
dotimes (calc (+ k 1))
(*if (<!t temp (/1! number-pes (1! (the fixnum 2))))
(*set temp (mod!! (*!t temp (! (the fixnum 2))) number-pes))
{*set temp {mod!! (+!! (1! (the fixnum 1))(*!! temp
(1! (the fixnum 2)))) number-pes))))
(*set dest-address temp)
(dotimes {i time-loop)
(multiple-value-bind (a cm-time b ¢)
(cm:time
(dotimes (j index)
*pset :no-collisions data-sent data-recvd dest-address
*pset :no-collisions data-sent data-recvd dest-address
(*pset :no-collisions data-sent data-recvd dest-address
*pset :no-collisions data-sent data-recvd dest-address
$*put :no-collisions data-sent data-recvd dest-address

December 1988

Appendix B: communication-test.lisp

TR 88.19 - 45 - December 1988

(*pset :no-collisions data-sent data-recvd dest-address)
(*pset :no-collisions data-sent data-recvd dest-address)
(*pset :no-collisions data-sent data-recvd dest-address)
(*pset :no-collisions data-sent data-recvd dest-address)
(*pset :no-collisions dat;—unt data-recvd dest-address))
:return-statistics-only-p t
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop)
(*set temp (the (eld-pvar cm:*cube-address-length*)

B (self-address!!)))}))))
:,, Timing #21

i 7/18/88

;i3 Written by: David Myers

; Description: This program reports the time it take the connection
machine to simulate the shuffle-exchange from code

B written in *lisp. The calculation of the destination

W address is included in this timing.

i+ Active Processors: All

;;; Size of Data Used: 32 bit unisigned integers

(‘defun time-21 (time-loop test-loop)
{format *fp* "~%Timing 21: perfect shuffie™%")
format *data* "~ %Timing 21: perfect shuffie™%")
let ((values 0))
E:etlcil values (make-array ’(100) :fill-pointer 0))
a
(*let ({dest-address (1! (the ixnum 0)))
(data-sent (randomt! (1! (the ixnum (ash 1 32))}))
(data-recvd (random!! (!! (the fixnum (ash 1 32)))))
(number-pes (1! (the ixnum cm:*user-cube-address-limit*))))
(declare (type (field-pvar cm:*cube-address-length*) dest-address))
(declare (type (field-pvar cm:*cube-address-length*) number-pes))
(declare (type (field-pvar 32) data-sent))
(declare (type (field-pvar 32) data-recvd))
(dotimes (i time-loop)
{format t ""d"%" i)
(multiple-value-bind (a cm-time b ¢)
{em:time
(dotimes {j test-loop)
(*when (<!! (the (field-pvar cm:*cube-address-length*)
(self-address!t))(/!! number-pes (I! {the ixnum 2))))
(*set dest-address (mod!! (*!! .
(the (Beld-pvar cm:*cube-address-length*)
(self-address!?)) (!! (the fixnum 2))) number-pes)))
(*when (>=!! (the {field-pvar cm:*cube-address-length*)
(self-address!!))(/1! number-pes (1! (the ixnum 2))))
(*set dest-address (mod!! (+'! (1! (the fixnum 1))(*1!
the (field-pvar cm:*cube-address-length*)
self-address!!)) (!! (the fixnum 2)))) number-pes)))
(*pset :no-collisions dat3—unt data-recvd dest-address))
:return-statistics-only-p t
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop)))))

iiv Timing #22
i 7/18/88

i3 Written by: David Myers

ii» Description: This program reports the time it take the connection
w machine to simulate the shuffie-exchange from code

Y written in *lisp. The calculation of the destination address
m is done by bit shifting, and the calculation of the

w destination address is not included in the time.

i1 Active Processors: Al

;i1 Size of Data Used: 32 bit unisigned integers

(*defun time-22 (time-loop test-loop)
format *fp* "% Timing 22: perfect shuffle - bit shift~%")
format *data* "~%Timing 22: perfect shuffle - bit shift"%")
let {(values 0))
(setq values (make-array ’(100) :fill-pointer 0))

Appendix B: communication-test.lisp

TR 88.19 - 46 - December 1988

(*all
(*let ((dest-address (the (ﬂeld-pzar cm:‘cube-ﬁ;:ldress-length‘)
self-address!!
data-sent (random!! {!! (the fixnum (ash 1 32)})))
(d;_tf::rec:%sr(at:doén!!] (lt)l;)e fixnum (ash 1 32)))))
shift-amt (! (the fixnum
{number-pes {!! (the fixaum cm:*user-cube-address-limit*))))
(declare (type (field-pvar cm:*cube-address-length*) dest-address))
(declare (type (feld-pvar cm:*cube-address-length*) number-pes))
(declare (type (field-pvar 32) data-sent))

declare (type (field-pvar 32) data-recvd))
declare {type (signed-pvar 2) shift-amt))
with-paris-from-*lisp

(cm:unsigned-shift (pvar-location dest-address)(pvar-location shift-amt)

(pvar-length dest-address)(pvar-length shift-amt)))
(*when (eq!! (the (pvar boolean)(*lisp-i::overflow-flag!!))
{the (pvar boolean) t!1))

(*set dest-address (logxor!! dest-address (!! (the fixnum 1)))))
(format *fp* "processor 2000: “D~%" (pref dest-address 2000))
(format *fp* "processor 7000: “D~%" (pref dest-address 7000)
(format *fp* "processor 8191: "D~ %" (pref dest-address 8191)
(dotimes (i time-loop)

format t "“d"%" i)

multiple-value-bind {a cm-time b c)

(cm:time
(dotimes (j test-loop)
(*pset :no-collisions dat;—sent data-recvd dest-address))
:return-statistics-only-p t
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop)))))

;;; Timing #23

i 7/18/88

;1 Written by: David Myers

;i1 Description: This program reports the time it take the connection
i machine to simulate the shuffle-exchange from code

written in *lisp. The calculation of the destination address
is done by bit shifting, and the calculation of the

W destination address is included in the time.

ii; Active Processors: All

;1» Sise of Data Used: 32 bit unisigned integers

(*defun time-23 (time-loop test-loop)
{format *fp* "~ % Timing 23: perfect shuffie - bit shift - calc. incl."%")
(format *data* "~%Timing 23: perfect shuffle - bit shift - calc. incl."%")
(let ((values 0)) °
(setq values (make-array '(100) :fill-pointer 0))
*all
(*let ((dest-address (the (feld-pvar cm:*cube-address-length*)
(self-addressit)))
data-sent (random!! {!! (the fixnum (ash 1 32)))))
data-recvd (randomt! (!! (the fixnum (ash 1 32)})))
shift-amt (!! (the fixaum 1)))
number-pes (!! (the fixaum cm:*user-cube-address-limit*))))
(declare (type (field-pvar cm:*cube-address-length*) dest-address))
declare (type (feld-pvar cm:*cube-address-length*) number-pes))
declare (type (feid-pvar 32) data-sent))
declare {type (fleld-pvar 32) data-recvd))
declare (type (signed-pvar 2) shift-amt))
dotimes (i time-loop)
format t ""d"%" i)
multiple-value-bind {a cm-time b ¢)
(em:time
(dotimes (j test-loop)
(with-paris-from-*lisp
(cm:unsigned-shift (pvar-location dest-address)
(pvar-location shift-amt)(pvar-length dest-address)
(pvar-length shift-amt))}
(*when (eq!! (the (pvar boolean)(*lisp-i::overfow-flagl!))
(the (pvar boolean) t!!))
(*set dest-address (logxor!! dest-address (!! (the fixnum 1)))))
(*pset :no-collisions data-sent data-recvd dest-address))

Appendix B: communication-test.lisp

TR 88.19 -47 - December 1988

:return-statistics-only-p t)
(*set dest-address (the (field-pvar cm:*cube-address-length*)
{self-address!t)))
(vector-push (/ cm-time test-loop) values)))
concentration dest-address)
statistics values time-loop}))))
v Timing #24
;s 7/18/88
;i Written by: David Myers
;33 Description: This program reports the time it take the connection
H machine to simulate the shuffle-exchange from code
W written in *lisp. The calculation of the destination address
HH is done by bit shifting, and the calculation of the

HH destination address is included in the time. Timing #24

0w differs from timing #23 in that the number one "1" used

H in the calculation of the destination address is not

HH broadcast during the calculation. Instead, the broadcasting
1 is done upon initialisation of the variable "one”.

i1; Active Processors: All

;33 Size of Data Used: 32 bit unisigned integers

(*defun time-24 (time-loop test-loop)
(format *fp* "~%Timing 24: perfect shuffle - bit shift - calc. incl. - 1 bdest™%")
(format *data* ""%Timing 24: perfect shffl - bit shift - cale. incl - 1 bdest.”%")
(let ((values 0))
(setq values (make-array '(100) :fill-pointer 0))
(*all
(*let ((dest-address (the (fleld-pvar cm:*cube-address-length*)
(self-address!!)))
{data-sent {(randoml! {!! (the fixnum (ash 1 32)))))
(data-recvd (random!! (!! (the fixnum (ash 1 32)))))
(shift-amt (!! (the fixnum 1)))
(one (! (the fixnum 1)))
{number-pes (!! (the fixnum cm:*user-cube-address-limit*))))
(declare (type {field-pvar cm:*cube-address-length*) dest-address))
declare (type (field-pvar cm: ‘cube-addreu-length‘) one})
declare (type (field-pvar em:*cube-address-length*) number-pes))
(declare (type {field-pvar 32) data-sent))
declare (type (field-pvar 32) data-recvd))
declare (type (signed-pvar 2) shift-amt))
dotimes (i time-loop)
(format t "~d~%" i)
(multiple-value-bind (a cm-time b ¢)
(cm:time
(dotimes (j test-loop)
*(with-paris-from-*lisp
(cm:unsigned-shift {pvar-location dest-address)
pvar-location shift-amt)
pvar-length dest-address)(pvar-length shift-amt)))
(*when (eq!! (the (pvar boolean)(*lisp-i::overflow-flag!!))
(the (pvar boolean) tl1))
(*set dest-address (logxor!l dest-address one)))
(*pset :no-collisions data-sent data~-recvd dest-address))
:return-statistics-only-p t)
(*set dest-address (the (field-pvar cm:*cube-address-length*)
self-address!!)))
(vector-push {/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop)))))

;i Timing #26

i 7/23/88

;15 Written by: David Myers

;3 Description: This program tests the time required for PEs to get information
HH from their four nearest neighbors. The NEWS operation is

W is used, and values received are stored. Border PEs are

i not members of the active set.

i3+ Active Processors: All

;;; Size of Data Used: 32 bit unisigned integers

("defun time-25 (time-loop test-loop)
(format *fp* "~ %Timing 25: NEWS grid - 4 nearest neighbors™%")

Appendix B: communication-test.lisp

TR 88.18 - 48 - December 1988

{format *data* "~%Timing 25: NEWS grid - 4 nearest neighbors™%")
(let ((values 0))
%:etq values (make-array '(100) :fll-pointer 0))
all
(*let ((x-addr (! (the fixnum 0)))
(v-addr (! (the ixnum 0)))
(a {random!! (!t (the fxnum (ash 1 32))}))
(data-recvd (random!! (!t (the fixnum (ash 1 32))))))
(declare (type (field-pvar cm:*physical-x-dimension-limit*) x-addr))
(declare }type {Beld-pvar cm:*physical-y-dimension-limit*) y-addr))
(declare {type (field-pvar 32) a))
{declare (type (field-pvar 32) data-recvd))
(with-paris-from-*lisp
{cm:my-x-address (pvar-location x-addr))
(cm:my-y-address (pvar-location y-addr}))
(*when (and!! (/=1 x-addr (! (the fixnum 0))
Il (the fixoum (- cm:*physical-x-dimension-limit* 1))))
(/=" y-addr (! (the fixnum 0))
(! (the fixnum (- cm:*physical-y-dimension-limit* 1)))))
{dotimes (i time-loop)
(format t "~d~%" i}
(muitiple-value-bind (a cm-time b ¢)
(em:time
(dotimes (j test-loop)
(*set data-recvd (pref-grid-relative!! a (1! {the fixaum -1))
(!t (the fixnum 0))))
(*set data-recvd (pref-grid-relative!! a (!! {the fixnum 1))
{!! (the fixnum 0)})))
(*set data-recvd (pref-grid-relative!! a (1! (the ixnum 0}))
{1 (the fixnum -1
{*set data-recvd (pref-grid-relative!! a (! (the fixnum 0))
" (! (the ixoum 1)))))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop))))))

i3y Timing #26

i 7/23/88

113 Written by: David Myers .

;i1 Description: This program tests the time required for PEs to get information
W from their eight nearest neighbors. The NEWS operation is

s used, and values received are stored. Border PEs are

B not members of the active set.

;s Active Processors: All

;i; Size of Data Used: 32 bit unisigned integers

'(’*'defun time-26 (time-loop test-loop)
(format *fp* "~%Timing 26: NEWS grid - 8 nearest neighbors™%")
(format *data* "~%Timing 26: NEWS grid - 8 nearest neighbors™%")
(let ({values 0))
%:etl? values (make-array '(100) :fill-pointer 0))
a
(*let ((x-addr (1! (the fixaum 0)))
{y-addr (! (the fixnum 0)))
a (randoml! (1! (the fixaum (ash 1 32)))))
data-recvd (randoml! (1! (the fixnum (ash 1 32))))))
(declare (type (field-pvar em:*physical-x-dimension-limit*) x-addr))
:ec:are type {ge}g-pvu ;x;):‘;)’)hylical-y-dimemion-limit‘) y-addr))
eclare (type (field-pvar a
Ede&are qy;;‘e (ﬁel*c}:pvn 32) data-recvd))
with-paris-from-*lisp
(cm:my-x-address (pvar-location x-addr))
(¢m:my-y-address (pvar-location y-addr)))
(*when (and!! (/=1! x-addr (!! (the ixnum 0))
(1! (the fixnum (- cm:*physical-x-dimension-limit* 1))))
{/=M y-addr (it (the fixaum 0))
(1! (the Axaum (- em:*physical-y-dimension-limit* 1)))))
(dotimes {i time-loop)
format ¢ ""d"%" i)
multiple-value-bind (a cm-time b ¢)
(em:time
(dotimes {j test-loop)
(*set data-recvd (pref-grid-retative!! a (1! (the fixnum -1))

Appendix B: communication-test.lisp

TR 88.19

-49 -

(1! (the fixnum 0))))

(*set data-recvd (pref-grid-relative!! a (I! (the fixnum 1))

(1! (the fixaum 0))))

(*set data-recvd (pref-grid-relativell a (! (the fixnum 0))

(1! (the fixnum -1))))

(*set data-recvd (pref-grid-relative!! a (!! (the fixaum 0))

(1! (the fixaum 1)})))

(*set data-recvd (pref-grid-relative!l a (! (the fixnum 1))

(1! (the fixnum 1))))

{*set data-recvd (pref-grid-relative!l a (!! (the fixnum 1))

(1! (the fxnum -1))))

(*set data-recvd (pref-grid-relativell a (!! (the fixoum -1))

{"* (the fixaum -1))))

{*set data-recvd (pref-grid-relativell a (! (the fixnum -1))

(1! (the fixnum 1)))))

:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop))))))

"' Timing #28-2
i 9/03/88
;;; Written by:

David Myers

;;; Descriptica: This program reports the time it takes the CM-2 to
HH simulate the pm2i network.

;3 Active Processors: All

;i Size of Data Used: 2 bit unisigned integers

t"'defun time-28-2 (time-loop test-loop)
(format *fp* "~ %Timing 28-2: pm2i - 2 bit"%")
(format *data® ""%Timing 28-2: pm2i - 2°%")

(let ((values 0))

(setq values (make-array ’(10) :fill-pointer 0))

*all

(et ((deat-azidr (the (pvar (unsigned-byte cm:*cube-address-length*))
self-address!!)))
(data-sent (r(andom!! (! (the ixnum 3))))
(data-recvd (!! (the fixnum 0))))
(declare (type (field-pvar cm:*cube-address-length*) dest-addr))
(declare (type (field-pvar 2) data-sent))
(declare (type (ﬂ‘eld-pvar 2) data-rec\:d))
(d(})tlmut (rfcr‘n” ’ cubs-l;fgfrl:ilength)
ormat *fp* "i = %
(*set dest-addr (+!! (1! (the fixnum (expt 2 k)))
(the (pv(ar (unsigned-byte cm: *cube-address-length*))(self-address!!))))
{dotimes (i time-loop)
(format t ""d~%" i)
(multiple-value-bind (a cm-time b c}

(cm:time

(dotimes (j test-loop)

(*pset

:no-collisions data-sent data-recvd dest-addr)
:no-collisions data-sent data-recvd dest-addr
:no-collisions data-sent data-recvd dest-addr
:no-collisions data-sent data-recvd dest-addr
:no-collisions data-sent data-recvd dest-addr
:no-collisions data-sent data-recvd dest-addr
:no-collisions data-sent data-recvd dest-addr
:no-collisions data-sent data-recvd dest-addr
:no-collisions data-sent data-recvd dest-addr
:no-collisions data-sent data-recvd dest-addr))

:return-statistics-only-p t)
(vector-push (/ em-time {* test-loop 10.0)) values)))
(statistics values time-loop))))))

iis Timing #28-4
i1 9/03/88
v Written by:

David Myers

;i3 Description: This program reports the time it takes the CM-2 to
HH simulate the pm2i network.

i;; Active Processors: All

;1> Sise of Data Used: 4 bit unisigned integers

t"'de!un time-28-4 (time-loop test-loop)
(format *fp* "~ %Timing 28-4: pm2i - 4 bit"%")

December 1988

Appendix B: communication-test.lisp

TR 88.19 - 50 - December 1988

(format *data* "~%Timing 28-4: pm2i - 4~ %")
(let ((values 0))
setq values (make-array ’(10) :fill-pointer 0))
*all
(*let ((dest-addr (the (pvar (unsigned-byte ecm:*cube-address-length*})
(self-address!!)))
(data-sent (random!! (!! (the fixnum 15))))
(data-recvd (!! (the fixaum 0}))))
(declare {type (field-pvar cm:*cube-addtess-iength*) dest-addr))
(declare (type (field-pvar 4) data-sent))
(declare (type (field-pvar 4) data-recvd))
(dotimes (k cm:*cube-address-length®)
(format *fp* "i = "D~ %" k)
(*set dest-addr (+!! (1! (the fixoum (expt 2 k)))
(the (pvar {unsigned-byte cm:*cube-address-length*))(self-address!!))))
(dotimes (i Eime—loop)
(format t "~d~%" i)
(r?ultiplevaluebind (a cm-time b ¢)
cm:time
(dotimes (j test-loop)
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr))
:return-statistics-only-p t)
(vector-push (/ cm-time (* test-loop 10.0)) values)))
(statistics values time-loop))))))

i1; Timing #28-8

i 9/03/88

ity Written by: David Myers

;i Description: This program reports the time it takes the CM-2 to
0w simulate the pm2i network.

i1 Active Processors: All

i1; Size of Data Used: 8 bit unisigned integers

(*defun time-28-8 (time-loop test-loop)
(format *fp* "~%Timing 28-8: pm2i - 8 bit"%")
(format *data* "~%Timing 28-8: pm2i - 8"%")
(let ((values 0))
(setq values (make-array '(10) :fill-pointer 0))
*all
(*let ((dest-addr (the {pvar (unsigned-byte cm:*cube-address-length*))
(self-address!!)))
(data-sent (random!! (! (the fixnum (ash 1 8)))))
(data-recvd (!1 (the fixnum 0)})))
(declare (type (Geld-pvar cm:*cube-address-length*) dest-addr))
(declare (type (field-pvar 8) data-sent))
(declare (type (field-pvar 8) data-recvd))
{dotimes (k cm:*cube-address-length*)
(format *fp* "i = "D"%" k)
(*set dest-addr (+!! (1! (the fixaum (expt 2 k)))
(the (pvar (unsigned-byte cm:*cube-address-length*))(seif-address!t))))
(dotimes (i time-loop
(format t ""d~%" i)
{multiple-value-bind (a cm-time b ¢)
(cm:time
(dotimes (j test-loop)
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr
*pset :no-collisions data-sent data-recvd dest-addr
*pset :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr
(*peet :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr

Appendix B: communication-test.lisp

TR 88.19

-51- December 1988

(*pset :no-collisions data-sent data-recvd dest-addr))
:return-statistics-only-p t)
(vector-push {/ cm-time (* test-loop 10.0)) values)))

(statistics values time-loop))))))
i+ Timing #28-16
i 9/03/88
353 Written by: David Myers
;;; Description: This program reports the time it takes the CM-2 to
HH simulate the pm2i network.
s Active Processors: All
iss Size of Data Used: 16 bit unisigned integers

(*defun time-28-18 (time-loop test-loop)
{format *fp* "~%Timing 28-16: pm2i - 16 bit"%")
l'on(xzat ‘dah); ""%Timing 28-16: pm2i - 16~%")
let {(values 0
(setq values (make-array ’(10) :fill-pointer 0))
*all
(*let ({dest-addr (the (pvar (unsigned-byte cm:*cube-address-length*))
(self-address!t)))
(data-sent (random!! (!! (the fixnum (ash 1 18)))))
(data-recvd (! {the fixaum 0))))
(declare (type (feld-pvar cm:*cube-address-length*) dest-addr))
(declare (type {field-pvar 16) data-sent))
(declare (type (feld-pvar 16) data-recvd))
(dotimes (k cm:*cube-address-length*)
(format *fp* "i = "D~%" k)
(*set dest-addr (+!! (! (the fixnum (expt 2 k)))
(the (pvar (unsigned-byte cm:*cube-address-length*))(self-address!!))))
(dotimes (i time-loop)
(format ¢ "~d~%" i)
(multiple-value-bind (a cm-time b ¢}
(cm:time
(dotimes (j test-loop) :
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr))
:return-statistics-only-p t)
(vector-push (/ cm-time (* test-loop 10.0)) values)))
(statistics values time-loop))))))
;37 Timing #28-32
i1 9/03/88
ivs Written by: David Myers
;+» Description: This program reports the time it takes the CM-2 to
HH simulate the pm2i network.
i3 Active Processors: All
;i Size of Data Used: 32 bit unisigned integers

1y
(*defun time-28-32 (time-loop test-loop)
format *fp* "~ %Timing 28-32: pm2i - 32 bit"%")
forma* ‘data* ""%Timing 28-32: pm2i - 32°%")
let ((v .. .es 0))
setq values (make-array ’(10) :fill-pointer 0))
*all
(*let ((dest-addr (the (pvar (unsigned-byte cm:*cube-address-length*))
(self-address!!)))
data-sent (random!! (!t (the fixnum (ash 1 32)))))
data-recvd (!! (the Axnum 0))))
type (field-pvar ecm:*cube-address-length*) dest-addr))
(declare {type (field-pvar 32) data-sent))
declare (type (feld-pvar 32) data-recvd))
dotimes (k cm:*cube-address-length®*)
(format *fp* "i = “D"%" k
(*set dest-addr (+!! (!! (the fixnum (expt 2 k)))

(declare

Appendix B: communication-test.lisp

TR 88.19

-52-

(the (pvar (unsigned-byte cm:*cube-address-length®))(self-address!!))))
(dotimes (i time-loop)
format t ""d"%" i)
multiple-value-bind (a cm-time b ¢)
(em:time
(dotimes (j test-loop)
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-add:)
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr)
{*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr))
:return-statistics-only-p t)
(vector-push (/ cm-time (* test-loop 10.0)) values)))
(statistics values time-loop))))))

; Timing #28-64

; 9/03/88

; Written by: David Myers

; Description: This program reports the time it takes the CM-2 to

simulate the pm2i network.

; Active Processors: All
; Size of Data Used: 84 bit unisigned integers

(*defun time-28-64 (time-loop test-loop)

(

format *fp* ""%Timing 28-84: pm2i - 64 bit"%")

{format *data® "“%Timing 28-64: pm2i - 64~ %")

(

"
it
1
HH
i
1
HH

let ({values 0))
(setq values (make-array '(10) :fill-pointer 0))
*all .
(*let ((dub—a{ldfr(tgz (pv!alr»()unligned-byte em:*cube-address-length*))
self-address
(data-sent (random!! (!! (the fixoum (ash 1 64)))))
(data-recvd (1! (the ixnum 0))))
(declare (type (field-pvar cm:*cube-address-length*) dest-addr))
(declare (type (field-pvar 64) data-sent))
(declare {type (field-pvar 84) data-recvd))
{dotimes {k cm:*cube-address-length*)
{format *fp* "i = “D~%" k)
(*set dest-addr (+1! (1! (the fixnum (expt 2 k)))
((the (pvar (unsigne;i-byte cm:*cube-address-length*))(self-address!!))))
dotimes (i time-loop
(format ¢ ""d"%" i)
(multiple-value-bind (a cm-time b c)
(em:time
(dotimes (j test-loop)
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr)
{*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr
{(*peet :no-collisions data-sent data-recvd dest-addr;
(*pset :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr))
:return-statistics-only-p t)
(vector-push {/ cm-time (* test-loop 10.0)) values)))
(statistics values time-loop))))))

Timing #28-80

; 9/03/88

Written by: David Myers

Description: This program reports the time it takes the CM-2 to
simulate the pm2i network.

Active Processors: All

; Size of Data Used: 80 bit unisigned integers

i""defun time-28-80 (time-loop teat-loop)

December 1988

Appendix B: communication-test.lisp

TR 88.19 - 53 - December 1988

(format *fp* "~%Timing 28-80: pm2i - 80 bit™%")
(format *data® "~%Timing 28-80: pm2i - 80" %")
(let ((values 0))
g:etq values (make-array ’(10) :fll-pointer 0))
all
(*let {(dest-addr (the (pvar (unsigned-byte cm:*cube-address-length*))
(self-addresst!)))
(data-sent (random!! (1! (the Aixnum (ash 1 80)))))
(data-reevd (1! (the fixaum 0))))
(declare (type (field-pvar cm:*cube-address-length*) dest-addr))
(declare (type (eld-pvar 80) data-sent))
{declare (type (field-pvar 80) data-recvd))
(dotimes (k cm:‘cube-ad;rm-length’)
format *fp* "i = "D"%" k
g'set dest-addr (+1! (1! (the ﬁ)xnum (expt 2 k)
(the (pvar (unsigned-byte cm:*cube-address-length*))(self-address!!})))
(dotimes (i time-loop)
(format t "~d~%" i)
(r?ultiple-value-bind (a em-time b ¢)
cm:time
(dotimes (j test-loop)
(*pset :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr
{*pset :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr
(*peet :no-collisions da.)ta-sent data-recvd dest-addr))
:return-statistics-only-p ¢
(vector-push (/ cm-time {* test-loop 10.0)) values)))
(statistics values time-loop))))))

;;; Timing #28-128

i 9/03/88

;i Written by: David Myers

;;; Description: This program reports the time it takes the CM-2 to
W simulate the pm2i network.

i1 Active Processors: All

;v Size of Data Used: 128 bit unisigned integers

(*defun time-28-128 (time-loop test-loop)
(format *fp* "~%Timing 28-128: pm2i - 128 bit"%")
(format *data®* ""%Timing 28-128: pm2i - 128" %")
(let ((values 0))
(:etq values (make-array ’(10) :fill-pointer 0))
all
(*let ({dest-addr (the (pvar (unsigned-byte cm:*cube-address-length*})
(self-addresstt)))
(data-sent (randomt! (!! (the fixnum (ash 1 128)))))
(data-recvd (!! (the fixnum 0))))
(declare (type (field-pvar cm:*cube-address-length*) dest-addr))
(declare {type (field-pvar 128) data-sent))
(declare (type (field-pvar 128) data-recvd))
(dotimes (k cm:*cube-address-length®)
(format *fp* "i = "D"%" k)
(*set dest-addr (! (1! (the fixnum (expt 2 k)))
(d(the (p\;ﬂ; (umlignesi-byte cm:*cube-address-length*))(self-address!!))))
otimes (i time-loop
(format t ""d"%" i)
{multiple-value-bind (a cm-time b c)
(cm:time
{dotimes (j test-loop)
*pset :no-collisions data-sent data-recvd dest-addr
*pset :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr
*pset :no-collisions data-sent data-recvd dest-addr
*pset :no-collisions data-sent data-recvd dest-addr
*pset :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr
(*pset :no-collisions data-sent data-recvd dest-addr

Appendix B: communication-test.lisp

TR 88.19 - 54 - December 1988

(*pset :no-collisions data-sent data-recvd dest-addr)
(*pset :no-collisions data-sent data-recvd dest-addr))
:return-statistics-only-p t)
(vector-push (/ cm-time (* test-loop 10.0)) values)))
(statistics values time-loop))))))
;7 Timing #29
i 7/24/88

v Written by: David Myers

;s Description: This program tests the time required for PEs to get information
oS from their eight nearest neighbors. The NEWS operation is

HH is used, and values received are stored. Border PEs are

HH not members of the active set. All numbers used in the

m grid command are broadcast prior to their use.

;v Active Processors: All

ii+ Size of Data Used: 32 bit unisigned integers

(*defun time-29 (time-loop test-loop)
(format *fp* "~% Timing 29: NEWS grid - 8 nearest neighbors, numbers not brdcst*%")
(format *data* "~%Timing 29: NEWS grid - 8 nearest neighbors, nmbrs not brdest™%")
(let {{values 0))
{setq values (make-array '(100) :fill-pointer 0))
*all
(*1et ((x-addr (! (the fixnum 0)))
{y-addr (1! (the fixnum 0)))
(zero (! (the ixnum 0)))
(one (1! (the fixoum 1)))
(neg-one (!! (the fixnum -1)))
(a (random!! (1! (the fixnum (ash 1 32)))))
(data-recvd (random!! (!! (the fixnum (ash 1 32))))))
(declare (type (field-pvar cm:*physical-x-dimension-limit*) x-addr))
(declare (type (field-pvar cm:*physical-y-dimension-limit*) y-addr))
(declare (type (field-pvar 32) a))
(declare (type (Beld-pvar 2) zero))
(declare ?type (Beld-pvar 2) one))

declare (type (signed-pvar 2) neg-one))
declare {type (field-pvar 32) data-recvd))
(with-paris-from-*lisp
(cm:my-x-address Epvar-location x-addr))
(cm:my-y-address (pvar-location y-addr}))
(*when (and!! (/=1! x-addr (!! (the fixnum 0))
(*t (the ixaum (- cm:*physical-x-dimension-limit* 1))))
(/=" y-addr (!! (the fixaum 0))
{!! (the fixnum (- cm:*physical-y-dimension-limit* 1)))))
{dotimes (i time-loop)
(format t ""d"%" i)
(multiple-value-bind (a cm-time b c)
{cm:time
(dotimes (j test-loop)
(*set data-recvd (pref-grid-relative!! a neg-one zero))
(*set data-recvd (pref-grid-relative!l a one sero))
*set data-recvd §pref-grid-relativel! a zero neg-one))
*set data-recvd (pref-grid-relative!! a zero one})
(*set data-recvd {pref-grid-relativel! a one one)
{*set data-recvd (pref-grid-relativel! a one neg-one))
{*set data-recvd (pref-grid-relative!! a neg-one neg-one))

*set data-recvd (pref-grid-relativell a neg-one one)))
:return-statistics-only-p t)
(vector-push {/ cm-time test-loop) values)))
(statistics values time-loop))))))

i; Timing #30

i 7/24/88

i3 Written by: David Myers

;i3 Description: This program reports the time it takes the CM-2 to
i pass data in ring.

i1 Active Processors: All

317 Sise of Data Used: 32 bit unisigned integers

"y

(*defun time-30 (time-loop test-loop)
format *fp* "~ % Timing 30: ring send” %"
format *data* "~"%Timing 30: ring send™%")
let {(values 0))

Appendix B: communication-test.lisp

TR 88.19

- 55 - December 1988

(setq values (make-array ’(100) :fill-pointer 0))
(*all
(*let ((dest-addr (1! (the fixnum 0)))
(gray-dest-addr (! (the fixoum 0)))
(data-sent (the {pvar (unsigned-byte cm:*cube-address-length*))
(self-address!!)))
{data-recvd (!! (the fixnum 0))))
{declare (type (field-pvar cm:*cube-address-length*) dest-addr))
(declare (type (Beld-pvar em:*cube-address-length*) gray-dest-addr))
{declare {type (feld-pvar 32) data-sent))
(declare (type (feld-pvar 32) data-recvd))
(*set dest-addr (modt! (+1! (1! (the fixnum 1))
(the (pvar (unsjgned-byte cm:*cube-address-length*))(self-address!!)))
! :*user- d imit*
(wi t(h!- ,(,gﬁfﬁ?:n'?*f:p user-cube-address-limit*))))
(cm:gray-code-from-integer (pvar-location gray-dest-addr)
(pvar-location dest-addr) cm:*cube-address-length*))
(dotimes (i time-loop)
(format t ""d~%" i)
(multiple-value-bind (a cm-time b c)
(cm:time
(dotimes (j test-loop)
{*pset :no-collisions data-sent data-recvd dest-addr))
:return-statistics-only-p t)
((tve:‘:t:.r-pu:llx {/ t{n-tillne t;)s))b)loop) values)))
statistics values time-loop

;i Timing #31

i 7/24/88

i1y Written by: David Myers

;i1 Description: This program reports the time it takes the CM-2 to
i pass data in a linear array.

;13 Active Processors: All

;13 Size of Data Used: 32 bit unisigned integers

(*defun time-31 (time-loop test-loop) .
(format *fp* "~%Timing 31: ring send - max PE number not active™%")
(format *data* ""%Timing 31: ring send - max PE number not active™%")
(let ((values 0)) .
(setq values (make-array '(100) :fill-pointer 0))
*all
(*1et ((dest-addr (! (the fixnum 0)))
(gray-dest-addr (!! (the fixnum 0)))
(data-sent (the {pvar (unsigned-byte cm:*cube-address-length*))
(self-address!!)))
(data-recvd (!t (the Sxnum 0))))
{declare (type (field-pvar cm:*cube-address-length*) dest-addr))
declare (type (fleld-pvar cm:*cube-address-length*) gray-dest-addr))
declare (type (field-pvar 32} data-sent))

(declare (type (fleld-pvar 32) data-recvd))
(*set dest-addr (mod!! (+!! (1t (the fixnum 1))
(the {pvar {unsigned-byte cm:*cube-address-length*)){self-address!!)))
(1 (tbe fixnum cm:*user-cube-address-limit*))))
(with-paris-from-*lisp
(cm:gray-code-from-integer (pvar-location gray-dest-addr)
(pvar-location dest-addr) cm:*cube-address-length*))
(*when (/=!! (1! (the fixnum (- cm:*user-cube-address-limit* 1)))
{the (pvar (unsigned-byte cm:*cube-addreas-length*))(self-address!t)))
(dotimes {i time-loop)
format ¢t ""d"%" i)
multiple-value-bind (a cm-time b)
(cm:time
(dotimes (j test-loop)
(*pset :no-collisions data-sent data-recvd dest-addr))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop))))))
"
H :‘/u;/x:: #40 - Hamming distance test.
v Written by: David Myers
;33 Description: This program reports the amount of time required to complete
0w send operations to unique address which are a specified

Appendix B: communication-test.lisp

TR 88.19 - 56 - December 1988

H hamming distance from the originating processors. This test
KA is the same as test #12 in hamming-test-off-chip.lisp
HA except the send addresses are calculated from MSB to LSB.
313 Active Processors: All
+3i Size of Data Used: 80 bit unsigned integers
(*defun time-40 (time-loop test-loop)
(format *fp* "~%time-40: 80 bit reverse hamming test"%")
(format *data* "~%time-40: 80 bit reverse hamming test"%")
(*all
{let ((mask 0)
{values 0))
(setq values (make-array ’(100) :A1l-pointer 0)) @
(*let ((dest-address (! (the fixnum 0)))
(data-value-sent (random!! (! {the fixaum (ash 1 80)))))
{data-value-rcvd (!! (the fixaum 0))))
(declare {type (field-pvar cm:*cube-address-length*) dest-address))
(dectare {type (field-pvar 80) data-value-sent))
(declare (type (field-pvar 80) data-value-rcvd))
(do ((k (- cm:*cube-address-length® 1)(k 1))(1 1(+11))((=k-1))
(format *fp* "Hamming Distance ~
(setq mask (logior (ash 1 k} muk))
(*set dest-address (log'xor!! (1! (the fixnum mask))
{the (feld-pvar cm:*cube-address-length*)(self-addressi!))))
(dotimes (i time-loop)
format t "~d~%" i)
multiple-value-bind (a cm-time b c)
(cm:time
(dotimes (j test-loop)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address)
{*pset :no-collisions data-value-sent data-value-revd
dest-address)
(*pset :no-collisions data-value-sent data-value-revd
dest-address)
(*pset :no-collisions data-value-sent data-value-revd
dest-address)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address)
(*pset :no-collisions data-value-sent data-value-rcvd
. dest-address)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time (* test-loop 10.0)) values)))
(concentration dest-address)
(statistics values time-loop})))))

;7 Timing #42 - Hamming distance test.

i 8/2/88

i3y Written by: David Myers

HH Deucnphon This program reports the amount of time required to complete
send operations when the number of active PEs/chip

is varied. All active PEs are sending to PEs located

3

HH at other chips.
i+; Active Processors: All
;3; Size of Data Used: 80 bit unsigned integers

(*defun time-42 (time-loop test-loop)
format *fp* "~ %time-42: # active pes-per-chip™ %%
format *data* "~ %time-42: # active pes-per-chip"%")
*all
(let ((mask 8191)
(l-index (/ test-loop 10))
(values 0))
(setq values (make-array '(50) :fill-pointer 0))
(*let {(dest-address (1! (the ixnum 0)))

Appendix B: communication-test.lisp

TR 88.19 - 57 -

(data-value-sent (random!! (!! (the fixaum (ash 1 80)))))
(on (1 (the xnum 0)))
(data-value-revd (1! (the fixnum 0))))
(declare (type (field-pvar cm:*cube-address-length*) dest-address))
declare (type (field-pvar 2) on))
declare (type (field-pvar 80) data-value-sent))
(declare (type (field-pvar 80) data-value-rcvd))
(*set dest-address (logxor!! (!! (the fixnum mask))
((the (field-pvar cm:*cube-address-length*)(self-address!!))))
dotimes (k 186)
(format *fp* "# of PEs "D~%" (+ k 1))
(dotimes (1 (+ k 1))
{*when {=!! {mod!! (the (feld-pvar cm:*cube-address-length®)
{self-address!!))(!! (the fixnum 186)))(!! (the fixoum 1))}
(‘ (;set (on '(!!! (tl(:'e' ?::u;in l)))))l)))
when (=!! oa (!! (the fixnum
(dotimes (i time-loop)
(format t ""d"%" i)
(multiple-value-bind (a cm-time b ¢)
(em:time
(dotimes (j l-index)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address
(*pset :no-collisions data-value-sent data—vslul—rcvd
. dest-address)
:retura-statistics-only-p t))
{vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
statistics values time-loop))
(*set on (! {the fixnum M)

Appendix B: communication-test.lisp

December 1988

TR 88.19 - 58 - .

i3+ Timing #5 - Hamming distance test.

i 7/13/88

331 Written by: David Myers

s+ Description: This program reports the amount of time required to complete
w send operations to unique address which are a specified

W hamming distance from the originating processors.
;i Active Processors: All
;s Size of Data Used: 1 bit unsigned integers

(*defun time-05 (time-loop test-loop)
(format *fp* "~%time-05: 1 bit hamming test™%")
{format *data® "~ %time-05: 1 bit hamming test"%")
*all
(let %(muk (1- cm:*user-cube-address-limit*))
values 0))
(setq values (make-array '(100) :fill-pointer 0))
(*let ({dest-address (!! (the fixnum 0)))
(data-value-sent (!! (the fixnum 1)))
(data-value-rcvd (!! (the fixnum 0))))
(declare (type {feld-pvar cm:*cube-address-length*) dest-address))
(declare (type (feld-pvar 1) data-value-sent))
(declare {type (Aeld-pvar 1) data-value-rcvd))
(*set dest-address (logxor!! {!! (the fixnum mask))
(the (field-pvar cm:*cube-address-length*)(self-address!!))))
(dotimes (i time-loop)
(format t ""d~%" i)
(multiple-value-bind (a cm-time b ¢)
{cm:time
(dotimes (j test-loop)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address))
:return-statistics-only-p t)
(vector-push {/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop)))))

;7 Timing #6 - Hamming distance test.

i 7/13/88

117 Written by: David Myers

;;; Description: This program reports the amount of time required to complete
B send operations to unique address which are a specified

HH hamming distance from the originating processors.

;17 Active Processors: All

;i Size of Data Used: 2 bit unsigned integers

{*defun time-06 (time-loop test-loop)
(format *fp* "~%time-06: 2 bit hamming test"%")
(format *data* "~%time-06: 2 bit hamming test™%")
*all
(let ((mask (1- cm:*user-cube-address-limit*))
(values 0))
(setq values (make-array '(100) :8ll-pointer 0))
(*let ((dest-address (!! {the ixnum 0)))
data-value-sent (! (the fixnum 1))
data-value-rcvd (!! (the fixaum 0}))))
declare (type (field-pvar cm:*cube-address-length*) dest-address))
declare (type (field-pvar 2) data-value-sent))
declare (type (Geld-pvar 2) data-value-rcvd))
(*set dest-address (logxor!t (1! (the fixnum mask))
(the {field-pvar cm:*cube-address-length*)(self-address!!})))
{dotimes (i time-loop)
format t "~d~%" i)
multiple-value-bind (a cm-time b ¢)
(cm:time
(dotimes (j test-loop)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
concentration dest-address)
statistics values time-loop)))))

Deceﬁlber 1988

Appendix B: hamming-test-off-chip.lisp

TR 88.19

-59 - December 1988

+++ Timing #7 - Hamming distance test.

s T/13/88

i1 Written by: David Myers

11 Description: This program reports the amount of time required to complete
K1 send operations to unique address which are a specified

W hamming distance from the originating processors.

i+ Active Processors: All

111 Size of Data Used: 4 bit unsigned integers

(*defun time-07 (time-loop test-loop)
(format *fp* ""%time-07: 4 bit hamming test™%")
format *data* "~%time-07: 4 bit hamming test™%")
*all
(let ((mask (1- cm:*user-cube-address-limit*))
(values 0))
(setq values (make-array '(100) :fill-pointer 0))
(*1et ({dest-address (!! {the ixnum 0)))
(data-value-sent (1! (the fixnum 3)))
(data-value-rcvd (!! (the fixnum 0))))
(declare (type (field-pvar cm:*cube-address-length*) dest-address))
(declare {type (feld-pvar 4) data-value-sent))
(declare (type (field-pvar 4) data-value-revd))
(*set dest-address (logxor!! (1! (the fixnum mask))
(the (field-pvar cm:*cube-address-length*)(self-addresst!))))
(dotimes (i time-loop)
(format t "~d"%" i)
(multiple-value-bind (a ¢cm-time b ¢)
(cm:time
(dotimes (j test-loop)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop)))))

;i Timing #8 - Hamming distance test.

i 7/13/88

i Written by: David Myers

;i; Description: This program reports the amount of time required to complete
A send operations to unique address which are a specified

B hamming distance from the originating processors.

i Active Processors: All

i1 Size of Data Used: 8 bit unsigned integers

(*defun time-08 (time-loop test-loop)
(format *fp* "~%time-08: 8 bit hamming test"%")
({ormat *data® ""%time-08: 8 bit hamming test™%")
all
(let ((mask {1- cm:*user-cube-address-limit*))
(values 0))
%setq values (make-array '(100) :fill-pointer 0))
*let {(dest-address (!! (the ixnum 0)))
data-value-sent (random!! {!! (the fixaum (ash 1 8)))))
§dat»valuo—rcvd (1! (the fixnum 0))))
field-pvar cm:*cube-address-length*) dest-address))
(declare (type (feld-pvar 8) data-value-sent))
declare (type (field-pvar 8) data-value-revd))
*set dest-address (logxor!! (1! (the ixnum mask))
(the (field-pvar cm:*cube-address-length*){self-address!t))))
(dotimes (i time-loop)
format t ""d"%" i)
multiple-value-bind (a cm-time b c)
(cm:time
(dotimes {j test-loop)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address))

(declare (type

:return-statistics-only-p t)
{vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop)))))

;;; Timing #9 - Hamming distance test.

Appendix B: hamming-test-off-chip.lisp

TR 88.19 - 60 - December 1988

s 7/13/88

;v Written by: David Myers

;i3 Description: This program reports the amount of time required to complete
it send operations to unique address which are a specified

] hamming distance from the originating processors.

;33 Active Processors: All

i3 Sise of Data Used: 16 bit unsigned integers

(*defun time-09 (time-loop test-loop)
format *fp* "~ %time-09: 16 bit hamming test™%")
Eormat *data* "“%time-09: 16 bit hamming test™%")
all
(let ((mask {1- cm:*user-cube-address-limit*))
(values 0))
(setq values (make-array '(100) :fll-pointer 0))
(*1et {(dest-address (! (the Sxnum 0}})
{data—value—-ent {random!! (11 (the fixaum {ash 1 16)))))
data-value-revd (! (the fixnum 0)))
(declare (type (field-pvar cm:*cube-address-length®) dest-address))
{declare {type (field-pvar 18) data-value-sent)) .
(declare (type (feld-pvar 16) data-value-rcvd))
(*set dest-address (logxor!! (! (the fixnum mask))
(the (field-pvar cm:*cube-address-length*){selt-addressi!))))
(dotimes (i time-loop)
(format t ""d~%" i}
(multiple-value-bind (a cm-time b ¢)
(cm:time
(dotimes (j test-loop)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
concentration dest-address)
statistics values time-loop}))))

;7 Timing #10 - Hamming distance test.

i 7/13/88 :

;17 Written by: David Myers

;;; Description: This program reports the amount of time required to complete
HH send operations to unique address which are a specified

W hamming distance from the originating processors.

;i1 Active Processors: All

i;; Sise of Data Used: 32 bit unsigned integers

(*defun time-10 (time-loop test-loop)
format *fp* "~ %time-10: 32 bit hamming test™%")
£ormat *data® ""%time-10: 32 bit hamming test™%")
all
(let ((mask (1- cm:*user-cube-address-limit*))
{values 0))
(setq values (make-array '(100) :fill-pointer 0))
(*1et ((dest-address (1! (the fixnum 0)))
data-value-sent (random!! (If (the ixnum (ash 1 32)))))
data-value-rcvd (!! (the fixnum 0))))
declare (type (fleld-pvar cm:*cube-address-length®) dest-address))
declare (type (field-pvar 32) data-value-sent))
declare (type (field-pvar 32) data-value-revd))
*set dest-address (logxor!! (1! (the fixnum mask))
(the (Reld-pvar cm:*cube-address-length*){self-address!!))))
(dotimes (i time-loop)
format t ""d"%" i)
multiple-value-bind (a cm-time b c}
(cm:time
(dotimes (j test-loop)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address))
:return-statistics-only-p t)
(vector-push {/ cm-time test-loop) values)))
concentration dest-address)
statistics values time-loop)))))

::: Timing #11 - Hamming distance test.
i 7/13/88

Appendix B: hamming-test-off-chip.lisp

TR 88.19

- 61 - December 1988

i+ Written by: David Myers
;i Description: This program reports the amount of time required to complete
send operations to unique address which are a specified

1 hamming distance from the originating processors.
;i Active Processors: All
;i3 Sise of Data Used: 64 bit unsigned integers

(*defun time-11 (time-loop test-loop)
(format *fp* "~%time-11: 64 bit hamming test"%")
(format *data* "~%time-11: 64 bit hamming test™%")
*all
(let ((mask (1- cm:*user-cube-address-limit*))
{values 0))
(setq values (make-array '(100) :fill-pointer 0))
(*let {(dest-address (!! (the fixnum 0)))
(data-value-sent (random!! (!! (the fixnum (ash 1 64)))))
(data-value-revd (!! (the fixnum 0))))
(declare (type (Beld-pvar cm:*cube-address-length*) dest-address))
declare {type (field-pvar 64) data-value-sent))
declare (type (field-pvar 64) data-value-rcvd))
(*set dest-address (logxor!! (! {the fixaum mask))
(the (Beld-pvar cm:*cube-address-length*)(self-address!!))))
(dotimes (i time-loop)
{format t ""d"%" i)
{(multiple-value-bind {a cm-time b ¢)
(cm:time
(dotimes (j test-loop)
{*pset :no-collisions data-value-sent data-value-rcvd
dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop)))))
;33 Timing #12 - Hamming distance test.
i 7/13/88
;;; Written by: David Myers
;7 Description: This program reports the amount of time required to complete
send operations to unique address which are a specified
hamming distance from the originating processors.
;+; Active Processors: All
;i Sise of Data Used: 80 bit unsigned integers

(*defun time-12 (time-loop test-loop)
(format *fp* "~%time-12: 80 bit hamming test%")
(format *data* "~%time-12: 80 bit hamming test"%")
*all
(let ((mask 15%
{values 0)
(setq values (make-array ’(100) :fill-pointer 0))
(*1et ((dest-address (!! (the fixnum 0)))
(data-value-sent (random!! (! {the fixnum (ash 1 80))})))
(data-value-revd (! (the fixnum 0))))
(declare (type (field-pvar cm:*cube-address-length*) dest-address))
declare (type (field-pvar 80; data-value-sent))
declare (type (field-pvar 80) data-value-rcvd})
do ((k 4 (+k 1))){(= k cm:*cube-address-length*))
(format *fp* "Hamming Distance "D~ %" (+ 1 k))
setq mask (logior (ash 1 k)))
2‘set dest-address (logxor!! (!t (the Sxnum mask))
(the (Geld-pvar em:*cube-address-length*)(self-address!!))))
{dotimes (i time-loop)
(format t ""d~%" i)
(multiple-value-bind {(a cm-time b c)
(cm:time
(dotimes (j test-loop)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
concentration dest-address)
statistics values time-loop)))}))

"

Appendix B: hamming-test-off-chip.lisp

TR 88.19

m

- 62 - December 1988

; Timing #13 - Hamming distance test.

7/13/88

Written by: David Myers

Descnphon This program reports the amount of time required to complete
send operations to unique address which are a specified
hamming distance from the originating processors.

; Active Processors: All

Size of Data Used: 128 bit unsigned integers

{*defun time-13 (time-loop test-loop)
(format *fp* "~ %time-13: 128 bit hamming test” %"
(format *data* "~ %time-13: 128 bit hamming test"%")
(*all

(let ((mask (1- cm:*user-cube-address-limit*))

(values 0))
(setq values (make-array ’(100) :fill-pointer 0))
(*let ((dest-address (It (the fixnum 0}))
(data-value-sent (random!! (! (the fixnum (ash 1 128)))))
(data~value-revd (! (the fixaum 0))))
(declare {type (field-pvar cm:*cube-address-length*) dest-address))
(declare (type (field-pvar 128) data-value-sent))
(declare (type (field-pvar 128) data-value-revd))
(*set dest-address (logxor!! {!! (the fixnum mask))
(the (Seld-pvar cm:*cube-address-length*)(self-address!!))))
(dotimes (i time-loop)
(format t "~d~%" i)
(multiple-value-bind (a cm-time b ¢)
(em:time
(dotimes (j test-loop)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop)))))

Timing #14 - Hamming distance test.
7/13/88

; Written by: David Myers
; Description: This program reports the amount of time required to complete

send operations to unique address which are a specified
hamming distance from the originating processors.

; Active Processors: All

Size of Data Used: 256 bit unsigned integers

’("‘defun time-14 (time-loop test-loop)
(format *fp* "~ %time-14: 256 bit hamming test”)
(format *data* "~ %time-14: 256 bit hamming test")
(*all

(let ((mask (1- cm:*user-cube-address-limit*))

(values 0))
(setq values (make-array '(100) :fill-pointer 0))
(*1et ((dest-address (1! (the fixnum 0)))
(data-value-sent (random!! (! (the Sxnum {ash 1 256)))))
(data-value-rcvd (1! (the fixnum 0))))
{declare (type (field-pvar cm:*cube-address-length*) dest-address))
(declare (type (field-pvar 256) data-value-sent))
(declare (type (field-pvar 256) data-value-revd))
{*set dest-address (logxor!! (1! (the fixnum mask))
(the (ﬁeld-pvu)' cm:*cube-address-length*)(self-addressl!))))
(dotimes (i time-loop
{format t ""d"%" i)
(multiple-value-bind (a cm-time b ¢)
(cm:time
(dotimes (j test-loop)
(*pset :no-collisions data-value-sent data-v:lu;)-tcvd
dest-address
:return-statistics-only-p t)
{vector-push {/ cm-time test-loop) values)))
concentration dest-address)
{lhtiltiu values time-loop)))))

Appendix B: hamming-test-off-chip.lisp

TR 88.19

”
1
»

-63-

Timing #5 - Hamming distance test.

7/13/88

Written by: David Myers

Description: This program reports the amount of time required to complete
send operations to unique address which are a specified
hamming distance from the originating processors.

Active Processors: All

Size of Data Used: 1 bit unsigned integers

(*defun time-05 (time-loop test-loop)
(format *fp* "~ %time-05: 1 bit hamming test*%")
(format *data® "~%time-05: 1 bit hamming test™%")
(*all

it
"
i
11’
11’
l)’
w
;;;

(*defun time-06 (time-loop test-loop) r

(let ((mask 15)

(values 0))
(setq values (make-array ’(100) :fll-pointer 0))
(*let ({dest-address (!! (the fixnum 0)))
(data-value-sent {!! (the fixaum 1)))
(data-value-rcvd (!t {the fixnum 0))))
(declare (type (field-pvar cm:*cube-address-length*) dest-address))
(declare (type (field-pvar 1) data-value-sent))
(declare (type (field-pvar 1) data-value-revd))
(*set dest-address (logxor!! (!! (the ixnum mask))
(the (field-pvar cm:*cube-address-length*)(self-address!!))))
(dotimes (i time-loop)
(format t ""d~%" i)
(multiple-value-bind (a cm-time b ¢)
(cm:time
(dotimes (j test-loop)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop)))))

Timing #6 - Hamming distance test.

7/13/88

Written by: David Myers

Description: This program reports the amount of time required to complete
send operations to unique address which are a specified
hamming distance from the originating processors.

Active Processors: All

Size of Data Used: 2 bit unsigned integers

e

(format *fp* "~%time-06: 2 bit hamming test"%")
(format *data* "~ %time-06: 2 bit hamming test™%")
(*all

(let ((mask 15

(values 0)
setq values (make-array '(100) :fill-pointer 0))
*let ((dest-address (!! (the fixnum 0)))
data-value-sent (1! (the fixnum 1)))
data-value-revd (1! (the fixaum 0))))
field-pvar cm:*cube-address-length®) dest-address))
declare (type (field-pvar 2) data-value-sent))
{declare (type (field-pvar 2) data-value-revd))
(*set dest-address (logxor!! (!! (the fixnum mask))
(the (field-pvar cm:*cube-address-length*)(self-address!!))))
(dotimes (i time-loop)
(format t "~d"%" i)
(multiple-value-bind (2 cm-time b c}
(cm:time
(dotimes (j test-loop)
(*pset :no-collisions data-value-sent data-value-revd
dest-address))

declare }type

:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop)))))

December 1988

Appendix B: hamming-test-on-chip.lisp

TR 88.19 - 64 -

i+ Timing #7 - Hamming distance test.

i 7/13/88

i1s Written by: David Myers

i;; Description: This program reports the amount of time required to complete
Y send operations to unique address which are a specified

HH hamming distance from the originating processors.

i+ Active Processors: All

;33 Size of Data Used: 4 bit unsigned integers

(*defun time-07 (time-loop test-loop)
(format *fp* "~ %time-07: 4 bit hamming test™%")
(format *data* "~%time-07: 4 bit hamming test"%")
*all
(let ((mask 15)
(values 0))
(setq values (make-array '(100) :fili-pointer 0))
(*let ((dest-address (!! (the ixnum 0)))
(data-value-sent (!! (the fixnum 3)))
(data-value-rcvd (1 {the Sxnum 0))))
(declare (type (Geld-pvar cm:*cube-address-length*) dest-address))
{declare (type (field-pvar 4) data-value-sent))
(declare (type (field-pvar 4) data-value-rcvd))
(*set dest-address {logxor!! (!! {the fixnum mask))
(the (field-pvar cm:*cube-address-length*)(self-address!!))))
{dotimes (i time-loop)
(format t "~d~%" i)
(multiple-value-bind (a em-time b ¢)
(cm:time
(dotimes (j test-loop)
(*pset :no-collisions data-value-sent data-value-revd
dest-address))
:return-statistics-only-p t)
(vector-push {/ cm-time test-loop) values)))
concentration dest-address)
statistics values time-loop)))))

;;; Timing #8 - Hamming distance test.
i 7/13/88
ii; Written by: David Myers
; Description: This program reports the amount of time required to complete
S send operations to unique address which are a specified
hamming distance from the originating processors.
;i Active Processors: All
i+ Sizse of Data Used: 8 bit unsigned integers
(*defun time-08 (time-loop test-loop)
(format *fp* "~ %time-08: 8 bit hamming test"%" }
(format *data* "~%time-08: 8 bit hamming test™ %")
*all
(let ((mask 15)
(values 0))
(setq values (make-array '(100) :fll-pointer 0))
(*let ((dest-address (1! (the fixnum 0)))
(data-value-sent (randomt! (!t (the fixnum (ash 1 8)))))
(data-value-rcvd (1! (the fixoum 0))))
declare (type (field-pvar cm:*cube-address-length*) dest-address))
declare (type (field-pvar 8} data-value-sent))
declare (type (field-pvar 8) data-value-rcvd))
*set dest-address (logxor!! (1! (the fixnum mask))
(the (feld-pvar cm:*cube-address-length*)(seif-address!!))))
(dotimes (i time-loop)
format ¢ ""d~%" i)
multiple-value-biad (a cm-time b ¢}
(cm:time
(dotimes (j test-loop)
(*pset :no-collisions data-value-sent data-value-revd
dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
concentration dest-address)
statistics values time-loop)))))

::: Timing #9 - Hamming distance test.

December 1988

Appendix B: hamming-test-on-chip.lisp

TR 88.19 - 65 - December 1988

;5 7/13/88

s Written by: David Myers

" Deacnphon This program reportl the amount of time required to complete
send operations to unique address which are a specified

S bhamming distance from the originating processors.

11+ Active Processors: All

i+ Size of Data Used: 16 bit unsigned integers

(‘defun time-09 (time-loop test-loop)
(format *fp* "~%time-09: 16 bit hamming test"%")
(format *data* "~ %time-09: 16 bit hamming test"%")
(*all
(let ((mask 15)
{values 0))
(setq values (make-array ’(100) :fill-pointer 0))
(*let ((dest-address (!! (the ixoum 0)))
(data-value-sent (random!! (! (the fixaum (ash 1 16)))))
{data-value-rcvd (1! (the fxnum 0)}))
(declare (type (field-pvar cm:*cube-address-length*) dub—addrus))
(declare (type (field-pvar 16) data-value-sent))
(declare (type (field-pvar 16) data-value-rcvd))
{*set dest-address (logxor!! (! (the Bxnum mask))
(the (field-pvar cm:*cube-address-length*)(self-address!!)})}
(dotimes (i time-loop)
(format t "~d" %" i)
(multiple-value-bind (a em-time b ¢)
(cm:time
(dotimes (j test-loop)
(*pset :no-collisions data-value-sent data-value-revd
dest-address))
:return-statistics-only-p t)
{vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop)))))

557 Timing #10 - Hamming distance test.

i 7/13/88

;37 Written by: David Myers

; Description: This program reports the amount of time required to complete
send operations to unique address which are a specified

hamming distance from the originating processors.

;i Active Processors: All

;7 Size of Data Used: 32 bit unsigned integers

(*defun time-10 (time-loop test-loop)
(format *fp* "~%time-10: 32 bit hamming test™%")
Eformat *data* "~ %time-10: 32 bit hamming test”%")
*all
(let ((mask 15)
{values 0))
(setq values (make-array ’(100) :fill-pointer 0))
(*let {{dest-address (!! (the fixaum 0)))
(data-value-sent (random!! (! (the fixnum (ash 1 32)))))
(data-value-rcvd (! {the ixnum 0))))
declare (type (feld-pvar cm:*cube-address-length*) dest-address))
declare (type (feld-pvar 32) data-value-sent))
(declare (type (field-pvar 32) data-value-rcvd))
(*set dest-address {logxor!! (!! (the ixnum maek))
(the (Geld-pvar cm:*cube-address-length*){(self-address!!))))
(dotimes (i time-loop)
(format ¢ "~d~%" i)
(multiple-value-bind (a cm-time b ¢}
(cm:time
(dotimes (j test-loop)
(*pset :no-collisions data-value-sent data-value-revd
dest-address))
:return-statistics-only-p t)
{vector-push {/ cm-time test-loop) values)))
concentration dest-address)
statistics values time-loop)))))

HH
;7 Timing #11 - Hamming distance test.
;i 7/13/88

Appendix B: hamming-test-on-chip.lisp

TR 88.19

"

- 66 - December 1988

Written by: David Myers

; Description: This program reports the amount of time required to complete

send operations to unique address which are a specified
hamming distance from the originating processors.

; Active Processors: All
Size of Data Used:

(*defun time-11 (time-loop test-loop)
(format *fp* "~%time-11: 64 bit hamming test™ %")
(format *data® "~%time-11: 64 bit hamming test"%")

(*all

(let {{mask 15;

{values 0)
(setq values (make-array ’(100) :fill-pointer 0))
(*let ((dest-address (!! {the ixnum 0)))
(data-value-sent {random!! (! (the fixnum (ash 1 64)))))
(data-value-rcvd (! (the fixnum 0))))
(declare (type (field-pvar cm:*cube-address-length*) dest-address))
(declare (type (field-pvar 64) data-value-sent))
(declare (type (field-pvar 64) data-value-rcvd))
(*set dest-address (logxor!! (1! (the fixnum mask))
(the (ﬁeld-pval)' cm:*cube-address-length*)(self-addressi!))))
(dotimes (i time-loop
(format t ""d~%" i)
(multiple-value-bind (a cm-time b c)

(em:time
(dotimes (j test-loop)

64 bit unsigned integers

(*pset :no-collisions data-value-sent data-value-revd

:return-statistics-only-p t)

dest-address))

(vector-push (/ cm-time test-loop) values)))

(co

ncentration dest-address)

(statistics values time-loop)))))

Timing #12 - Hamming distance test.

; 7/13/88
; Written by: David Myers
; Description: This program reports the amount of time required to complete

send operations to unique address which are a specified

hamming distance from the

; Active Processors: All
Size of Data Used:

(*defun time-12 (time-loop test-loop)
(Format *fp* "~%time-12: 80 bit hamming test"%")
(format *data* "~%time-12: 80 bit hamming test™%")

*all

(let ((mask 0)

(values 0))
(setq values (make-array '(100) :fill-pointer 0))
{*let ((dest-address (!! (the fixnum 0)))
(data-value-sent (random!! (1! (the fixnum (ash 1 80))))}

(data-value-rcvd (!t (the fixnum

originating processors.

80 bit unsigned integers

o))

declare (type (fleld-pvar cm:*cube-address-length*) dest-address))
declare (type (eld-pvar 80; data-value-sent))

declare (type (field-pvar 80

dotimes (k 4)
format *fp* "Hamming Distance "D~%" (+ 1 k))
setq mask (logior (ash 1 k)))
(*set dest-address (logxor!! (!t (the fixnum mask))

(the (Beld-pvar cm:*cube-address-length*)(self-addresslt))))
{dotimes (i time-loop)

%

format t ""d"%" i)
multiple-value-bind (a cm-time
(cm:time

(dotimes (j test-loop)

data-value-rcvd))

bc)

(*pset :no-collisions data-value-sent data-value-rcvd

:return-statistics-only-p t)

dest-address))

(vector-push (/ cm-time test-loop) values)))

concentration dest-address)
statistics values time-loop))}}))

Appendix B: hamming-test-on~chip.lisp

TR 88.19

- 67 -

;v Timing #13 - Hamming distance test.
i 7/13/88
1+ Written by: David Myers .
i1 Description: This program reports the amount of time required to complete
HH send operations to unique address which are a specified
HH hamming distance from the originating processors.
3 Active Processors: All
i1 Size of Data Used: 128 bit unsigned integers
(*defun time-13 (time-loop test-loop)
(format *fp* "~%time-13: 128 bit hamming *-st*%")
(format *data* "~%time-13: 128 bit hamm:... test"%")
{*all
(let {{mask 15)
(values 0))
(setq values (make-array '(100) :fill-pointer 0))
(*let ((dest-address (!! (the fixnum 0)))
(data-value-sent (random!! (!! (the ixnum (ash 1 128)))))
(data-value-rcvd (! (the fixaum 0})))
(declare (type (field-pvar cm:*cube-address-length*) dest-address))
(declare {type (field-pvar 128) data-value-sent))
(declare {type {field-pvar 128) data-value-revd))
{“set dest-address (logxor!! (!! (the fixnum mask))
(the (field-pvar cm:*cube-address-length*)(self-address!!))))
(dotimes (i time-loop)
(format ¢t "~d~%" i)
(multiple-value-bind {a cm-time b ¢)
(cm:time
(dotimes (j test-loop)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address))
:return-statistics-only-p t))
{vector-push (/ ecm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop)))))

;v Timing #14 - Hamming distance test.

i 7/13/88

331 Written by: David Myers

;33 Description: This program reports the amount of time required to complete
HH send operations to unique address which are a specified

Y hamming distance from the originating processors.
;3 Active Processors: All
331 Size of Data Used: 256 bit unsigned integers

(*defun time-14 (time-loop test-loop)
(format *fp* "~%time-14: 256 bit hamming test"%")
(l;ormat *data*® "~ %time-14: 256 bit hamming test”%")
(*all
{let ({mask 15
(values 0)
(setq values {(make-array *(100) :fill-pointer 0))
(*let ((dest-address (1! (the fixaum 0)))
data-value-sent (random!! (!! (the fixnum (ash 1 256)))))
data-value-rcvd (1! (the fixnum 0))))
{declare (type (feld-pvar cm:*cube-address-length*) dest-address))
declare (type (Geld-pvar 2568) data-value-sent))
declare (type (feld-pvar 256) data-value-rcvd))
(*set dest-address (logxor!! (I! (the ixaum mask))
(the {field-pvar em:*cube-address-length*)(self-address!t))))
{dotimes (i time-loop)
format t "“d"%" i)
multiple-value-bind (a cm-time b ¢)
{cm:time
(dotimes (j test-loop)
(*pset :no-collisions data-value-sent data-value-rcvd
dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
concentration dest-address)
statistics values time-loop)))))

December 1988

Appendix B: hamming-test-on-chip.lisp

TR 88.19 - 68 - December 1988

;v Timing #32
s 7/28/88

i Written by: David Myers

;7 Description: This program tests the time required for an unsigned add.
i+s Active Processors: All

h; Size of Data Used: 32 bit unisigred integers

(*defun time-32 (time-loop test-loop)
(format *fp* "~ %Timing 32: unsigned add™%")
(format *data® "% Timing 32: unsigned add~%")
(let ((values 0))
(setq values (make-array '(100) :fill-pointer 0))
*all
(*1et ({x (*! (the fixnum 100999)))
(v (! (the ixnum 372826)))
(dest (! (the fixaum 0)))}
(declare (type (field-pvar 32) x))
(declare (type (feld-pvar 32) y))
(declare (type (field-pvar 32) dest))
{dotimes (i time-loop)
(format t "~d~%" i)
(multiple-value-bind (a em-time b ¢)
(cm:time
(dotimes (} test-loop)
(with-paris-from-*lisp
{cm:unsigned-add (pvar-location dest)(pvar-location x)
{pvar-location y)(pvar-length dest)(pvar-length x)
(pvar-length y))))
:return-statistics-only-p t)
(vector-push (/ ecm-time test-loop) values)))
(statistics values time-loop)))))}

;;; Timing #33
i 7/26/88

i Written by: David Myers : i
;;; Description: This program tests the time required for an unsigned multiply.
;s Active Processors: All

i3 Size of Data Used: 33 bit unisigned integers

(*defun time-33 (time-loop test-loop)
(format *fp* "~%Timing 33: unsigned multiply~%")
(format *data* "~% Timing 33: unsigned multiply~%"}
(let ((values 0))
(setq values (make-array '(100) :fill-pointer 0))
*all
(*let {(x (!! (the fixnum 3874738)))
(v (1! (the fixnum 2743878)))
(dest (1! (the fixaum 0))))
(dectare (type (field-pvar 32) x))
(declare (type (Beld-pvar 32) y))
(declare (type (field-pvar 32) dest))
(dotimes (i time-loop
(format t "~d~%" i)
(multiple-value-bind (a cm-time b c)
(em:time
dotimes (j test-loop)
with-paris-from-*lisp
{cm:unsigned-multiply (pvar-location dest)(pvar-location x)
(pvar-locatian)y))(pvar-length dest)(pvar-length x)
(pvar-length ¥))))
:return-statistics-only-p t)
{vector-push (/ cm-time test-loop) values)))
(statistics values time-loop)))))
;37 Timing #34
i 7/26/88

3 Written by: David Myers
;;; Description: This program tests the time required for an unsigned subtract.
i1i Active Processors: All

;i Size of Data Used: 34 bit unisigned integers

t""defun time-34 (time-loop test-loop)

Appendix B: arithmetic-test.lisp

TR 88.19

- 69 -

(format *fp* "~% Timing 34: unsigned subtract™%")
(format *data® "~%Timing 34: unsigned subtract™%")
(let {(values 0))
:etq values (make-array '(100) :All-pointer 0))
all

(*let ((x (! (the fixnum 7645838)))
(v (1! {the fixnum 3838629)))
(dest (1t (the fixaum 0))))
declare (type (field-pvar 32) x);
declare (type {field-pvar 32) y)
declare (type (Geld-pvar 32) dest))
dotimes (i time-loop)
(format ¢t "~d~%" i)
(multiple-value-bind (a cm-time b c)
(cm:time
(dotimes (j test-loop)
(with-paris-from-*lisp
(¢m:unsigned-subtract (pvar-location dest)(pvar-location x)
(pvar-location y)(pvar-length dest)(pvar-length x)
(pvar-length y))))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop)))))

;7 Timing #3585

i 7/26/88

i Written by: David Myers

;i Description: This program tests the time required for an unsigned divide.
;11 Active Processors: Al

i+ Size of Data Used: 32 bit unisigned integers

(*defun time-35 (time-loop test-loop)
(format *fp* "~ % Timing 35: unsigned divide™%")
(format *data® "~%Timing 35: unsigned divide"%")
(let ((values 0))
(setq values (make-array ’(100) :fll-pointer 0))
(*all
{*1et {(x (1! (the ixnum 5892633)))
{v (! (the fixnum 9752466)))
{dest (1 (the fixnum 0))))
declare (type (field-pvar 32) x))
declare (type (field-pvar 32) y))
declare (type (field-pvar 32) dest))
(dotimes (i time-loop)
format t ""d"%" i)
multiple-value-bind (a cm-time b c)
(em:time
dotimes (j test-loop)
with-paris-from-*lisp
(cm:unsigned-truncate-divide (pvar-location dest)(pvar-location x)
pvar-location y)(pvar-length dest)(pvar-length x)
pvar-length y))))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop)))))

HH

s+ Timing #3868

i1 7/26/88

;i Written by: David Myers

;13 Description: This program tests the time required for a floating-point add.

i3 Active Processors: All
13 Sise of Data Used: 32 bit unisigned integers

(*defun time-36 (time-loop test-loop)
format *fp* "~%Timing 36: floating point add~%")
format *data* "“%Timiog 36: floating point add~%")
let ((values 0))
:etq values (make-array ’(100) :fill-pointer 0))
all
(*let ((x (11 (the single-float 0.2)))
(v (! (the single-float 1.1)))
(dest (11 (the single-ficat 0.0))))
(declare (type (pvar single-float) x))

December 1988

Appendix B: arithmetic-test.lisp

TR 88.19 -70 - December 1988

(declare (type (pvar single-float) y))
(declare (type {pvar single-float) dest))
(dotimes (i time-loop)
(format ¢ "~d~%" i)
{multiple-value-bind (a cm-time b ¢)
(em:time
(dotimes {j test-loop)
(with-paris-from-*lisp
{em:f+ (pvar-location x)(pvar-location y))))
:return-statistics-only-p t
(*set x (!! (the single-Boat 0.0)))
(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop)))))
ii; Timing #37

i 7/26/88

i1y Written by: David Myers
;i1 Description: This program tests the time required for a floating-point subt.
i+ Active Processors: All

;3; Size of Data Used: 32 bit unisigned integers
{*defun time-37 (time-loop test-loop)
format *fp* "“%Timing 37: floating point subtract™%")
format *data* ""%Timing 37: floating point subtract™%")
(let ({values 0))
(setq values (make-array '(100) :fill-pointer 0))
(*all
(*let {(x {1 (the single-float 100000.0)))
(¥ {1 (the single-float 1.0)))
(dest (1! (the single-float 0.0))))
(declare {type (pvar single-float) x))
(declare (type (pvar single-float) y))
(declare (type (pvar single-float) dest))
(dotimes (i time-loop)
(format ¢ "~d"%" i)
(multiple-value-bind (a em-time b ¢)
(cm:time
(dotimes (j test-loop)
(with-paris-from-*lisp
(cm:f- (pvar-location x){pvar-location y}))}
:return-statistics-only-p t)
(*set x (1! (the single-float 100000.0}))
(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop)))))
i+ Timing #38
s 7/26/88

;i3 Written by: David Myers
i;; Description: This program tests the time required for a floating-point mult.
i1y Active Processors: All

;i Size of Data Used: 32 bit unisigned integers

"
(*defun time-38 {time-loop test-loop)

{format *fp* "“%Timing 38: Soating point multiply~%")
format *data* "~%Timing 38: floating point multipl~%")
let {(values 0)

{inner-loop (/ test-loop 10)))
(setq values (make-array '(100) :fill-pointer 0))
*all
((*1et {(x (! (the single-float 2.0})))
(v (1! (the single-Aoat 1.72)))
{dest (1 (the single-float 0.0))))
(declare (type (pvar single-float) x
(declare (type (pvar single-float) y
(declare {type (pvar single-float) dest))
(dotimes (i time-loop)
(format t ""d~%" 1)
{multiple-value-bind (a cm-time b)
(cm:time
(dotimes (j inner-loop)
{with-paris-from-*lisp
{em:f* (pvar-location x)(pvar-location y)))
(with-paris-from-*lisp

Appendix B: arithmetic-test.lisp

TR 88.19 -71 - December 1988

(cm:f* (pvar-location x)(pvar-location y)))
(with-paris-from-*lisp

{cm:f* (pvar-location x)(pvar-location y)))
(with-paris-from-*lisp

{em:f* (pvar-location x)(pvar-location y)))
{with-paris-from-*lisp

{cm:f* (pvar-location x)(pvar-location y)))
(with-paris-from-*lisp

(cm:f* (pvar-location x)(pvar-location y)))
(with-paris-from-*lisp

{cm:f* (pvar-location x){pvar-location y)))
(with-paris-from-*lisp

{cm:f* (pvar-location x)(pvar-location y)))
(with-paris-from-*lisp

(cm:f* (pvar-location x){pvar-location y)))
(with-paris-from-*lisp

(em:f* (pvar-location x)(pvar-location y})))
:return-statistics-only-p t)
(*set x (1! (the single-Boat 2.0)))

(vector-push (/ cm-time test-loop) values}))
(statistics values time-loop)))))
':: Timing #38-2
i 7/26/88

;i Written by: David Myers
;17 Description: This program tests the time required for a floating-point mult.
i1; Active Processors: All

3i; Sise of Data Used: 32 bit unisigned integers

i"'defun time-38-2 {time-loop test-loop)
{format *fp* ""%Timing 38: floating point multiply: using nice numbers™%")
(format *data* "~%Timing 38: floating point multipl~%")
(et {(values 0)
(inner-loop (/ test-loop 10)))
{setq values (make-array '(100) :fill-pointer 0))
*all
(*let ((x (*! (the single-float 2.0)))
(¥ (1! (the single-foat 1.0)))
(dest (! (the single-Aoat 0.0))))
(declare (type (pvar single-float x))
(declare (type (pvar single-float) y))
(declare (type (pvar single-float) dest))
(dotimes (i time-loop)
format t ""d"%" i)
multiple-value-bind (a cm-time b ¢)
(cm:time
dotimes (j inner-loop)
with-paris-from-*lisp
((c:x]:f" (Pv;r-loc:lt'ion x)(pvar-location y)))
with-paris-from-*lisp
((t_::r;:f‘ (Pv?r-loc:lt_ion x)(pvar-location y)))
with-paris-from-*lisp
((?;1;:1" (?v;r-loc::‘ion x){pvar-location y)))
with-paris-from-*lisp
((g:x;:f" (Pv;r-loc:;jon x)(pvar-location y)))
with-paris-from-*lisp
((;;1;:1"' (Pv:r-loc::‘ion x)(pvar-location y)))
with-paris-from-*lisp
((?:rl::f‘ (?v:r-loc:;.ion x)(pvar-location y)))
with-paris-from-*lisp
((c:rlx)f‘ (Pv?r-loczt.ion x)(pvar-location y)))
with-paris-from-*lisp
((g:x;:f' (}?v?r-loc:ltjon x)(pvar-location y)))
with-paris-from-*lisp
(em:f* (pvar-location x)(pvar-location)
(with-paris-from-*lisp
(t;m:f‘ (tpv:_ut-'locati;)n xz()pvn-location)
:return-statistics-only-p
(*set x (1! (the single-float 2.0)))
(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop)))))
HH

;1; Timing #39

Appendix B: arithmetic-test.lisp

TR 88.19 -72- December 1988

;i3 7/26/88

115 Written by: David Myers

;33 Description: This program tests the time required for a floating-point mult.
;33 Active Processors: All

i Size of Data Used: 32 bit unisigned integers
1)
{*defun time-39 (time-loop test-loop)
(format *fp* "~%Timing 39: floating point divide™%")
(format *data* "~% Timing 39: floating point divide™%")
(let ({values 0))
(setq values (make-array '(100) :fll-pointer 0))
(*all
(*1et ({x (1! (the single-float 45098732.0)))
(v (1! (the single-float 1.72)))
(dest (!t (the singie-Aoat 0.0}))))
(declare (type (pvar single-float) x))
declare (type (pvar single-float) y))
declare (type (pvar single-fioat) dest))
(dotimes (i time-loop)
format t "“d~%" i)
multiple-value-bind (a ¢m-time b ¢)
(cm:time
dotimes (j test-loop)
with-paris-from-*lisp
(em:f/ (pvar-location x)(pvar-location y))))
:return-statistics-only-p t
(*set x (1! (the single-float 2.0)))
(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop)))))
{defun main ()
setq *fp* (open "arith-stats” :direction :output))
setq *data* (open "arith-data” :direction :output))
time-32 100 20000)
time-33 100 5000)
time-34 100 50000)
{time-35 100 4000
(time-36 100 8000 -
(time-37 100 8000
time-38 100 8000)
time-39 100 4000)
(close *data*)
(close *1p*))

Appendix B: arithmetic-test.lisp

TR 88.19 -73 -

(defvar *fp*)
(defvar *data*)

(defun enable-all ()
{cm:move-constant-always cm:context-flag 1 1)
{cm:move-constant-always cm:overflow-flag 0 1))

(*defun concentration (address-pvar)
(declare (type (fleld-pvar cm:*cube-address-length*) address-pvar))
(*let {(revd-count))
(declare (type (feld-pvar 16) rcvd-count))
(*all
(*set rcvd-count (!! {the fixoum 0))))
(*pset :add (1! (the ixnum 1)) revd-count address-pvar)
(let {(n-a-p (cm:global-count em:context-flag)))
(format *fp* " number of active processors: "D~ %" n-a-p)
*all
(*when (/=!! rcvd-count (!! (the fixnum 0)))
(let* ((n-receiving (cm:global-count cm:context-flag))
(total-sum (*sum revd-count)
(max-rcvd (*max revd-count)
(av-received (/ (Boat total-sum) {float n-receiving))))
(format *fp* " number receiving: "D (*,1F%) %" n-receiving
(* 100.0 (/ n-receiving {foat n-a-p))))
(format *fp* " average received: ~,2F"%" av-received)
{format *fp* " max received: "D~%" max-rcvd)))}))))

(defun statistics (values time-loop)
(let ((average 0)

(std-dev 0)
(sum 0)
(sqr-sum 0)

(maximum 0)
minimum 0)
temp 0))
(dotimes (i time-loop)
(setq temp (vector-pop values))
(format *data* ""F~%" temp)
(setq sum (+ sum temp))
(setq sqr-sum (+ sqr-sum (* temp temp)))
(setq maximum (max maximum temp))
(if (= i 0)
(setq minimum temp))
(setq minimum (min minimum temp)))
(setq average (/ sum time-loop))
(setq std-dev (sqrt (- (/ sqr-sum (- time-loop 1))
(/ (* time-loop (* average average))(- time-loop 1))}})
(format *fp* " Average: "{"%" average)
(format *fp* " Standard Deviation: "~ %" std-dev)
(format *fp* " Maximum: “f"%" maximum
(format *fp* " Minimum: “{~%" minimum)))

;;; Timing #4

i 6/30/88

;i1 Written by: David Myers

i5; Description: This program times the calculation of an
B inner product on the CM2.

i1 Active Processors: All

i;i Size of data: 32 bit unsigned integers

(*defun time-4 (time-loop test-loop)
format *fp* "time-4~%"
format *data* "time-4"%")
let ((values 0))
enable-all)
Esetq values (make-array ’(100) :fill-pointer 0))
*all
(*1et ({a (1! (the fixnum 1)))
b (1! (the fixnum 4)))
¢ (! (the ixaum 0)))
result {!! (the fixnum 0))))
declare (type (field-pvar 32) a)
declare {type (field-pvar 32) b)

December 1988

Appendix B: algorithm-test.lisp

TR 88.19

-74 - December 1988

(declare {type (field-pvar 32) ¢))
(declare {type (feld-pvar 32) result))

;; Instruction to be timed.

(dotimes (i time-loop)
{format t "~d~%" i)
(multiple-value-bind (a cm-time b ¢)
(em:time
(dotimes (i test-loop)
(*setc (!t ab
(*set result (scan!! ¢ '+1)))
:return-statistics-only-p t)
(vector-push {/ cm-time test-loop) values)))
{statistics values time-loop)))))
;7 Timing #15
i 7/18/88
iy Written by: David Myers
;i; Description: This program reports the time it take the connection .
0 machine to do the following calculation,
i u(i) = sin{ 2%pi*i /n).

;i7 Active Processors: All
i+ Size of Data Used: e

(*defun time-15 (time-loop test-loop)
(format *fp* "~ %time-15: u(i) = sin{ 2*pi*i /0) "%")
(format *data* "~%time-15: u(i) = sin(2*pi*i / n) "%")
(let {{values D))
%ietq values (make-array '(100) :fill-pointer 0))
all
(*1et ((i {foat!! (+1! (1! (the fixnum 1))(the (feld-pvar
cm:*cube-address-length*){self-address!!)))))
(two-pi (*! (! (the single-float 2.0))
(! (the single-foat 3.145927))))
{(number-pes (!! (the single-float {float
cm:*user-cube-address-limit*})))
(u (1! (the single-float 0.0))))
(declare (type (pvar single-foat) i))
(declare (type (pvar single-float) number-pes))
(declare (type (pvar single-float) u))
(declare ({type (pvar single-float) two-pi))
(dotimes (k time-loop)
(format ¢ "~d~%" k)
(multiple-value-bind (a cm-time b ¢)
(em:time
{dotimes (j test-loop)
{*set u {sint! (/1! (*!! two-pi i) number-pes))))
:return-statistics-only-p ¢
(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop)))))
"
;33 Timing #19
i 7/18/88
i Written by: David Myers
;37 Description: This program reports the time it take the connection
i machine to calculate a random number in each PE.
i1 Active Processors: All
;3s Sise of Data Used: 32 bit unisigned integers

{*defun time-19 (time-loop test-loop)
format *fp* "“%Timing 19: random!!~%")
format *data® "~% Timing 19: rardom!!~%")
(let ((values 0))
{setq values (make-array '(100) :fill-pointer 0))
(*all
(*let ((number (1! (the fixnum 0)))
(seed (1! (the fixnum (ash 1 32)))))
declare (type (field-pvar cm:*cube-address-length*) number))
declare (type (field-pvar cm:*cube-address-length*) seed))
dotimes (i time-loop)
(format ¢ "~d~%" i)

Appendix B: algorithm-test.lisp

TR 88.19

-75 -

(multiple-value-bind (a cm-time b c)
{cm:time
(dotimes (j test-loop)
(*set sumber {random!! seed)))
:return-statistics-only-p t}
(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop)))))

;;; Timing #27
Wi 7/23/88

v Written by: David Myers
;3 Description: This program reports the time it takes the CM-2 to perform

"

image smoothing. NEWS operations are used. Float values
are used instead of integers because the current
implementation of /!! always returns a float value.

; Active Processors: All
Sise of Data Used: 32 bit unisigned integers

(*defun time-27 (time-loop test-loop)
(format *fp* "% Timing 27: NEWS grid - image smoothing™%")
(format *data* "% Timing 27: NEWS grid - image smoothing™%")
(tet ({values 0))

(setq values (make-array '(100) :fill-pointer 0))

(*let ((x-addr (1! (the fixnum 0)))
(y-addr (1! (the fixnum 0)))
{(sum (1! {the fixnum 0)))
(a (random!! (! (the fixnum (ash 1 8)))))
(data-recvd {random!! {!! (the fixnum (ash 1 8))})))
(declare (type {field-pvar cm:*physical-x-dimension-limit*) x-addr))
(declare (type {field-pvar cm:*physical-y-dimension-limit*) y-addr))
(declare (type (pvar single-float) a))
(declare (type (pvar single-float) data-recvd))
(declare (type (pvar single-float) sum))
(with-paris-from-*lisp
(cm:my-x-address (pvar-location x-addr))
(cm:my-y-address (pvar-location y-addr)))
(*when (and!! (/=!! x-addr (!! (the fixnum 0))

(! (the fixnum (- em:*physical-x-dimension-limit* 1))))
(/=" y-addr (! (the fixnum 0)}
(" (the fxnum (- cm:*physical-y-dimension-limit* 1)))})

(dotimes (i time-loop)
(format ¢ "~d~%" i)
(multiple-value-bind (a cm-time b ¢}
(cm:time
(dotimes (j test-loop)

set sum (/! (+!! a

*
(pref-grid-relative!! a (1! (the fixnum -1))(!! (the fixnum 0)))
pref-grid-relativell a (1! (the fixnum 1))(1! (the fixnum 0)))
fpref-grid-relativel! a (I (the Bxnum 0)){!! (the fixnum -1)))
pref-grid-relative!! a (1! (the fixaum 0))(!! (the fixaum 1))
pref-grid-relative!! a (! (the fixaum 1)){1! (the fixnum 1)))
{pref-grid-relative!! a (1! (the Aixnum 1))(!! (the fixaum -1)))
(pref-grid-relative!! a (1! (the ixoum -1))

(1! (the fixaum -1)))
(pref-grid-relativel! a (1! (the fixnum -1))
(* (the fixaum 1))))(!! (the fixnum 9)))))

:return-statistics-only-p t)
(vector-push {/ cm-time test-loop) values})))
(statistics values time-loop))))))

(defun main ()

setq *fp* (open "algorithm-stats™ :direction :output))
setq *data* (open "algorithm-data” :direction :output))
time-4 100 3000

time-15 100 100

time-19 100 4000)

time-27 100 600)

close *data*)

close *fp*))

December 1988

Appendix B: algorithm-test.lisp

TR 88.19 - 76 - ' December 1988

;v Timing #1
i 7/5/88

i+ Wreitten by: Bill O’Farrell

1»s Modified by: Descritpion

i+ Description: This program reports the time required for mulitiplication
B of two unsigned integers.

i1y Active Processors: All

;3 Data Size: 2 bit and 97 bit unsigned integers

(*defun time-test01 (time-loop test-loop)
(format *fp* "~%TIME-TEST01~%"
{format *data* "~%TIME-TEST01-%")
(enable-all)
(setq values {make-array ’(100) :fill-pointer 0))
(*all
(*1et ((three (1! (the fxnum 1)))
(curr (random!! (1! (the fixnum (ash 1 94))))))
(declare (type (field-pvar 2) three))
(declare (type (feld-pvar 97) curr))
(dotimes (i time-loop)
(format ¢t "~d~%" i)
(multiple-value-bind (a cm-time b ¢}
(cm:time
(dotimes (j test-loop)
(*set curr (*!! curr three))) :return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop)))}

;i Timing #3

i 7/5/88

;i Written by: Bill O’Farrell

137 Modified by: David Myers

; Description: This program performs the same test as timel.lisp
except a 35 bit number is used instead of a two bit

HA number.
ity Active PEs: All
i+; Size of Data: 35 and 97 bit unsigned integers

(*defun time-test03 (time-loop test-loop)
(format *fp* "“%TIME-TEST03"%")
Eformat ‘d)ata.* "~%TIME-TEST03~%")
enable-all
{setq values (make-array ’'(100) :fill-pointer 0))
(*all
{*let ((v35 (1!.(the ixnum (ash 1 35))))
{curr (random!! (! (the fixnum (ash 1 94)}})))
(declare (type (8eld-pvar 35) v35))
(declare (type (Geld-pvar 97) curr))
{dotimes (i time-loop)
(format ¢ "~d~%" i)
{multiple-value-bind (a cm-time b c)
(cm:time
dotimes (j test-loop)
set curr (!! curr v35))) :return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop))))

+;; Timing 4

;s 7/5/88

;v Written by: Bill O'Farrell

+++ Modified by: David W. Myers

; Description: This program times a send with overwrite of two
45 bit unsigned integers to random locations

++i Active Processors: All

;3; Sise of Data Used: 45 bit unsigned integers

(*defun time-test04 (time-loop test-loop)
(format *fp* "% TIME-TEST04~%")
format *data* "% TIME-TEST04"%")
enable-all)
setq values {(make-array '(100) :fill-pointer 0))
(*all

Appendix B: final-syracuse-test.lisp

TR 88.19 - 77 -

(*let ({v45 (random! (!! (the fixnum (ash 1 45)))))
v45dest (random!! (!! (the ixnum (ash 1 45)))))
dest-address (random!! (1! (the fixnum (ash 1
cm:*cube-address-length*})))))
(declare (type (Beld-pvar 45) v45))
(declare {type (field-pvar 45) v45dest))
(declare (type (field-pvar cm:*cube-address-length*) dest-address))
(dotimes (i time-loop)
(format t "~d~%" i)
{multiple-value-bind (a cm-time b c)
(cm:time
(dotimes (j test-loop)
(*pset :overwrite v45 v45dest dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
{statistics values time-loop))))

;;; Timing #5

i 7/5/88

;i3 Written by: Bill O'Farrell

;3 Modified by: David Myers)

;i; Deacription: Each PE sends to another PE that is a small hamming
W distance away.

i1+ Active Processors: All

;3 Size of Data Used: 45 bit unsigned integers.

i:defun time-test05 (time-loop test-loop)
format *fp* "~ % TIME-TEST05"%")
format *data® ""%TIME-TEST05"%")
(enable-all)
(setq values (make-array '(100) :fill-pointer 0))
(*all -
(*let ((v45 (random!! (1! (the fixnum (ash 1 45)))))
%;45:;; (l-amz!c;n(x:lll (!;(tbe ﬁ:(()l)!)u)m (ash 1 45)))))
es Tess e fixnum
(mask (1! (the fixnum 0))))
(declare (type (feld-pvar 45) v45))
{declare (type (field-pvar 45) v45dest))
(declare (type {field-pvar cm:*cube-address-length*) dest-address))
{declare (type (field-pvar cm:*cube-address-length*) mask))
(dotimes (i 6) ‘
{*set mask {+!! mask (ash!! (1! (the fixnum 1)) -
(random!! {!! (the fixaum cm:*cube-address-length*)))))))
(*set dest-address (logior!! mask (the (field-pvar
cm:*cube-address-length*)(self-address!t))))
(dotimes (i time-loop)
format t "“d~%" i)
multiple-value-bind (a cm-time b c)
(cm:time
(dotimes (j test-loop)
(*pset :overwrite v45 v45dest dest-address))
:return-statistics-only-p t)
{vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop))))

3 Timing #8

i 7/5/88
i Written by: Bill O'Farrell
7 Modified by: David Myers

; Description: Each PE sends to another PE that is at most a hamming
distance of 6 away.

i1y Active Processors: All

;i3 Sise of Data Used: 45 bit unsigned integers.

(*defun time-test08 (time-loop test-loop)
format *fp* "~%TIME-TEST08"%")
format *data* "% TIME-TEST06%")
enable-all)
:etq values (make-array '(100) :fill-pointer 0))
all
(*let ((v45 (random!! (1! (the fixnum (ash 1 46)))))

December 1988

Appendix B: final-syracuse-test.lisp

TR 88.19

-78 - December 1988

(v45dest (random!! (!! (the fixnum (ash 1 45)))))
{mask (1! (the fixaum 0)))
(dest-address (!! (the fixnum 0))))
{declare (type (field-pvar 45) v45))
(declare {type (feld-pvar 45) v45dest))
(declare (type (field-pvar cm:*cube-address-length*) dest-address))
(declare (type {feld-pvar cm:*cube-address-length*) mask))
(dotimes (i 8)
(*set mask (logior!! mask (ash!! (!! (the ixnum 1))
(random!! (1t (the fixnum cm:*cube-address-length*)))))))
(*set dest-address (logxor!! mask (the (field-pvar
cm:*cube-address-length*)(self-address!!))))
(d((;timen (: tir:eglgop))
ormat ¢ ""d"%" i
(multiple-value-bind (a cm-time b ¢)
(em:time
(dotimes {j test-loop)
(*pset :overwrite v45 v45dest dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop))))

; Timing #7

; 7/7/88

; Written by: Bill O'Farrell

; Modified by: David W. Myers

; Description: Send to unique addresses with a Hamming distance of exactly

9.

; Active Processors:
; Size of Data Used:

m

(*defun time-test07 (time-loop test-loop)
(format *fp* “~%TIME-TEST07"%")
(format *data* "% TIME-TEST07"%")
(enable-all) -
(setq values {make-array '(100) :Bll-pointer 0))

*all

(*let {(v45 (random!! (1! (the fixaum (ash 1 45)))))
v45dest (random!! (!! (the ixnum (ash 1 45)))))
dest-address)
(bit-list)
(found-index)
(received-something)
{my-address-taken nil!!)
(dest-fixed nill!)
(return-address))
(declare (type (fleld-pvar 45) v45))
(declare (type (field-pvar 45) v45dest))
(declare (type (feld-pvar 15) dest-address))
(declare (type (field-pvar 45) bit-list))
(declare (type (Beld-pvar 4) found-index))
{declare (type boolean-pvar received-something))
(declare {type boolean-pvar my-address-taken))
declare (type boolean-pvar dest-fixed))
declare (type (field-pvar cm:*cube-address-length*) return-address))
(do ((its 1 (1+ its)))
((<= (*when {not!! dest-fixed) (*sum (!! (the fixnum 1))}) 200))
(*when (not!! dest-fixed)
(format ¢ ""D: computing addresses for "D processors™ %" its
(*sum (1 (the fixnum 1))))
*set dest-address (!! (the fixnum 0)))
*set bit-list (1! (the fixnum 0)))
*set found-index (!! (the fixaum 0)))

do
= 0 (*when {<!! found-index (!! (the fixaum ¢
=l ((‘mm {11 (the ﬂx(nusn nm 0
{*when (<! found-index (!f (the fixnum 9})}))
(*1et ((ran-position (randomi! (1! (the ixnum 15))))
(not-unique nilll))
declare (type (fleld-pvar 5) ran-position))
declare (type boolean-pvar not-unique))
do ({i 0 (1+ 1))

Appendix B: final-syracuse-test.lisp

TR 88.19 -79 - December 1988

(=i9) '
(*when (<!! (1! (the fixnum i)) found-index)
(*when (=!! (load-bytel! bit-list (*!! {I! (the fxnum i))
(!t (the fixnum 5)))(1! (the fixnum 5)))
ran-position)
{*set not-unique t!1))))
(*when (not!! not-unique)
(*set bit-list
(deposit-byte!! bit-list (*!! found-index
(1! (the fixaum 5))) (1! (the fixnum 5))
ran-position))
(*set found-index (1+!! found-index))))))
(dotimes (i 9)
(*set dest-address
(logior!! dest-address
(ashit (11 1)
(load-byte!! bit-list (*1t (! (the fixnum i))
(1 (the Exnum 5))){!! {the Sxnum 5)))))))
(*let {(bit-sum (!! (the Sxnum 0)))
{dest-address-temp dest-address))
(declare (type (field-pvar 5) bit-sum))
{declare (type (Geld-pvar 15) dest-address-temp))
(dotimes (i 15)
(*set bit-sum (+!1 bit-sum (load-byte!! dest-address-temp
(1t (the fixnum 0))(!! (the fixaum 1)))))
(*set dest-address-temp (ash!t dest-address-temp
(" (the fixnum -1)))))
(*when (/=!! bit-sum (! (the ixaum 9)))
(do-for-selected-processors (cube-add)
(format t "Processsor "D has a bit-sum not equal to 9°%"
cube-add))))
(*set dest-address (logxor!! dest-address
(the (Seld-pvar cm:*cube-address-length*)(self-address!!))))
(*all (*set received-something nill!))
(*pset :overwrite ~
(the (feld-pvar cm:*cube-address-length*)(self-address!!))
return-address dest-address received-sometbing)
*all
(*when (and!! received-something (not!! my-address-taken))
(*set my-address-taken t!)
(*peet :no-collisions t!! dest-fixed return-address)))))
(dotimes (i time-loop)
{format t ""d"%" i)
{(*when dest-fixed
(format t "~%number active: "D~%" (*sum (!! (the fixnum 1))))
(multiple-value-bind (a cm-time b c)
(cm:time
(dotimes (j test-loop)
(*pset :overwrite v45 v45dest dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values))))
(concentration dest-address)
(statistics values time-loop))))

3 Timing #8
3w 7/7/88

;i Written by: Bill O’Farrell

i Modified by: David W. Myers

:ii Description: Send to unique addresses with a Hamming distance of exactly
] 6

iy Active Proc;olorlz
i;i Sise of Data Used:

(*defun time-test08 (time-loop test-loop)

format *fp* ""%TIME-TEST08" %

format *data* "~%TIME-TEST08"%")

enable-all)

setq values (make-array '(100) :fill-pointer 0))

*all

(*let ((v45 (random!! (1! (the fixnum (ash 1 45)))))
v45dest (randoml! (!t (the Aixnum (ash 1 45)))))
dest-address) .
bit-list)

Appendix B: final-syracuse-test.lisp

TR 88.19 - 80 -

{found-index)
(received-something)
(my-address-taken niilt)
{dest-fixed nill!)
(return-address))
(declare (type (Geld-pvar 45) v45))
(declare (type (feld-pvar 45} v45dest))
(declare (type (feld-pvar 15) dest-address))
(declare (type (field-pvar 45) bit-list))
(declare (type (field-pvar 4) found-index))
(declare {type boolean-pvar received-something))
(declare (type boolean-pvar my-address-taken))
(declare (type boolean-pvar dest-fixed))
{declare (type (field-pvar cm:*cube-address-length*) return-address))
(do ((its 1 (1+ its)))
((<= (*when (oot!! dest-fixed) (*sum (!! (the fixnum 1)))) 200))
(*when (not!! dest-fixed)
{format ¢ ""D: computing addresses for "D processors™ %" its
(*sum (! (the fixnum 1))))
(*set dest-address (! (the fixnum 0)))
(*set bit-list (! (the fixaum 0)))
(“set)found-index (1! (the fixnum 0)))
(do
{(= 0 (*when {<!! found-index {!! {the fixnum 6)))
. (*sum (! (the fixnum 1))))))
{(*when (<!! found-index (!! (the ixaum 6)))
(*let ((ran-position (random!! (!t (the fixnum 15))))
(not-unique nil!!))
declare (type (field-pvar 5) ran-position}})
decz(zre (type)b)oclean-pvat not-unique))
do ((i0 (1+ 1))
((=i8)
(*when (<! (!t (the fixnum i)) found-index)
{*when (=!! (load-bytelt bit-list (*! (!! (the fixnum i))
(1! (the fixaum 5)))(1! (the fixnum 5)))
ran-position)
¢ h("u(t nt:!b'-unizue_t!!))g)
when (not!! not-unique
(*set bit-list
(deposit-bytel! bit-list (*!! found-index
{1 (the fixaum 5))) (! (the fixaum 5))
ran-position))
(*set found-index (1+!! found-index))))))
e et and
set dest-address
{logior!! dest-address
(ashl! (1! 1)
(load-byte!! bit-list (*!1 (!! (the fixnum i))
. (! (the fixnum 5)))(!! (the fixnum 5)))))))
(*let ((bit-sum (! (the fixaum 0)))
(dest-address-temp dest-address))
declare (type (field-pvar 5) bit-sum))
declare (type)(ﬁeld-pvar 15) dest-address-temp))
dotimes (i 15
(*set bit-sum (+!! bit-sum (load-byte!! dest-address-temp
(1t (the fixnum 0))(!! (the fixnum 1)))))
(*set dest-address-temp (ash!! dest-address-temp
. _ (1t (the fixaum -1)))
{*when (/==!1 bit-sum (! (the fixnum 8)))
(do-for-selected-processors (cube-add)
(format ¢ "Processsor "D has a bit-n;m not equal to 8"%"
cube-add})))
(*set dest-address (logxor!! dest-address
(the (feld-pvar cm:*cube-address-lengih*)(self-address!l))))
{*all (*set received-something nilit}))
(*pset :overwrite
(the (feld-pvar cm:*cube-address-length*)(self-address!l))
return-address dest-address received-something)
(*all
(*when (and!! received-something (not!! my-address-taken))
*set my-address-taken t!!)
*paet :no-collisions t!! dest-fixed return-address)))))
(dotimes (i time-loop)

December 1988

Appendix B: final-syracuse-test.lisp

TR 88.19

- 81-

(format t "~d~%" i)
(*when dest-fixed

December 1988

{format t "~%aumber active: "D"%" (*sum (!! (the fixnum 1))))

{multiple-value-bind (a cm-time b c)
(em:time
(dotimes (j test-loop)

(*pset :overwrite v45 v45dest dest-address))

:return-statistics-only-p t)

(vector-push (/ cm-time test-loop) values))))

(concentration dest-address)
(statistics values time-loop))))

;53 Timing #11

i 7/5/88

i3 Written by: Bill O’Farrell
;3; Modified by: David Myers

”m

distance of 3 away.

; Active Processors: All

; Description: Each PE sends to another PE that is at most a hamming

Size of Data Used: 45 bit unsigned integers.

'(:"defun time-test11 (time-loop test-loop)
(format *fp* ""%TIME-TEST11"%")

(
(

format *data* ""%TIME-TEST11"%")
enable-all)

(setq values {make-array '(100) :fill-pointer 0))

*all

(*1let ((v45 (randoml! (!! {the fixnum (ash 1 45)))))
(v45dest (random!! (!! (the fixnum (ash 1 45)))))

(mask (! (the fixnum 0)))

(dest-address (! (the fixnum 0))))
(declare (type (Geld-pvar 45) v45))
(declare (type (feld-pvar 45) v45dest))

(declare (type (field-pvar cm:‘cube—addreu—length‘} dest-address))

(declare {type (field-pvar cm:*cube-address-length*

(dotimes (i 3)

mask))

{*set mask (logior!! mask (ash!! (!f (the fixaum 1))
(random!! (! (the fixnum em:*cube-address-length*)))))))
(*set dest-address (logxor!! mask (the (field-pvar
cm:*cube-address-length*)(self-address!!))))

(dotimes (i time-loop)
(format t "~d"%" i)
(multiple-value-bind (a cm-time b c)
(cm:time
(dotimes (j test-loop)

(*pset :overwrite v45 v45dest dest-address))

:return-statistics-only-p t)

{vector-push (/ cm-time test-loop) values)))

{concentration dest-address)
(statistics values time-loop))))

; Timing #12

i 7/7/88
i; Written by: Bill O'Farrell
;7 Modified by: David W. Myers

6.

; Active Processors:
; Sise of Data Used:

defun time-test12 (time-loop test-loop)

(format *fp* ""%TIME-TEST12"%")

format *data* ""%TIME-TEST12"%")
enable-all)

*all

; Description: Send to unique addresses with a Hamming distance of exactly

setq values (make-array ’(100) :fill-pointer 0))

(*let {{v45 (nndo:l;léd(: t(t(‘;:nﬂ:::lﬁ ((ﬁ'(l;hle?},),mn (ash 1 45)))))

dest-address)

(bit-list)

found-index)
received-something)
my-address-taken nilll)

Appendix B: final-syracuse-test.lisp

TR 88.19 - 82 - December 1988

(dest-fixed nil!!)
{return-address))
declare (type (field-pvar 45) v45))
declare {type (field-pvar 45) v45dest))
{declare (type (field-pvar 15) dest-address))
declare (type (feld-pvar 45) bit-list))
declare (type (feld-pvar 4) found-index))
{declare ﬁtype boolean-pvar received-something))
(declare (type boolean-pvar my-address-taken))
(declare (type boolean-pvar dest-fixed))
(declare (type (Beld-pvar cm:*cube-address-length*) return-address))
(do {(its 1 (1+ its)))
{{<= (*when (not!! dest-fixed) (*sum (! (the fixnum 1}))) 200))
(*when (not!! dest-fixed)
{format t ""D: computing addresses for "D processors™%" its
(*sum (1! (the fixnum 1))))
(*set dest-address (!! (the fixaum 0)))
(*set bit-list (1! (the fixnum 0)))
(*set found-index (!t (the fixnum 0)))
(do)
((= 0 (*when (<!! found-index (1! (the fixaum 3}))
(*sum (!! (the fixnum 1))))))
(*when (<!! found-index (!! (the fxnum 3)))
{*let ((ran-position (randoml! (!! (the fixnum 15))))
(not-unique nil!!)}
(declare (type (field-pvar 5) ran-position))
(declare (type boolean-pvar not-unique))
(do (0 1+)
((=13)
(*when (<! (! (the fixnum i)) found-index)
(*when (=!! (load-bytel! bit-list (*!! (! {the fixnum i))
(M (the fixnum 5)))(!! (the ixnum §)))
ran-position)
(*set not-unique t11))))
{*when (not!! not-unique)
(*set bit-list
(deposit-bytel! bit-list (*!! found-index
(1 (the fixaum 5))) (1t (the fixnum 5))
ran-position))
{*set found-index {1+!! found-index))))))
(dotimes (i 3)
(*set dest-address
(logior!! dest-address
(ash!? {11 1)
(load-byte!! bit-list (*!! (1! (the fixnum i))
(! (the fixnum 5)))(!! (the fixnum 5)))})))
(*let {(bit-sum (! (the fixaum 0)))
(dest-address-temp dest-address))
{declare (type (feld-pvar 5) bit-sum))
(declare (type (Geld-pvar 15) dest-address-temp))
(dotimes (i 15)
{*set bit-sum (-+!! bit-sum (load-byte!! dest-address-temp
(1! (the fixaum 0))(!! (the fixnum 1)))))
(*set dest-address-temp (ash!! dest-address-temp
{1t (the fixnum -1)))))
(*when (/==! bit-sum (!l (the fixnum 3)))
(do-for-selected-processors (cube-add)
(format ¢ "Processsor "D has a bit-sum not equal to 3°%"
cube-add))))
(*set dest-address (logxor!! dest-address
(the (Beld-pvar cm:*cube-address-length*)(self-address!l))))
(*all (*set received-something nill!))
(*pset :overwrite
(the (feld-pvar cm:*cube-address-length*)(self-addressit))
return-address dest-address received-something)
(*all
(*when (and!! received-something (not!! my-address-taken))
*set my-address-taken ti1)
*pset :no-collisions tI! dest-fixed return-address)))))
(dotimes (i time-loop)
format t "“d"%" i)
*when dest-fixed
(format ¢ "~%number active: “D"%" (*sum (!! (the fixnum 1))

Appendix B: final-syracuse-test.lisp

TR 88.19 -83- December 1988

(x?ultiple-value-bind {a cm-time b ¢}
cm:time
(dotimes (j test-loop)
(*pset :overwrite v45 v45dest dest-address))
:return-statistics-only-p t)
(vector-push {/ cm-time test-loop) values))))

(concentration dest-address)
(statistics values time-loop})}))

;s Timing #14

i 7/5/88 .
;i Written by: Bill O'Farrell
;37 Modified by: David Myers

; Description: Each PE sends to another PE that is at most a hamming
distance of 1 away.

;i Active Processors: All

;17 Size of Data Used: 45 bit unsigned integers.

(*defun time-test14 (time-loop test-loop)
(format *fp* "~%TIME-TEST14"%")
{format *data* "~ % TIME-TEST14~%")
enable-all)
setq values (make-array (100) :fill-pointer 0))
*all
(*let ((v45 (random!! (1! (the fixnum (ash 1 45)))))
(v45dest (random!! {!! (the fixaum (ash 1 45)))))
(mask {11 (the fixnum 0)))
(dest-address {!! (the fixoum 0))))
(declare (type (field-pvar 453 v45))
(declare (type (Beld-pvar 45) v45dest))
(declare (type (field-pvar cm:*cube-address-length*) dest-address))
(declare (type (field-pvar cm:*cube-address-length*) mask))
(*set mask (logior!! mask (ash!! (1! (the ixnum 1))
(random!! (!t (the fixnum cm:*cube-address-length*))))))
(*set dest-address (logxor!! mask (the (field-pvar
cm:*cube-address-length*)(self-address!!))))
(dotimes (i time-loop)
(format t ""d~%" i)
(muitiple-value-bind (a cm-time b ¢)
(cm:time
(dotimes (j test-loop)
(*pset :overwrite v45 v45dest dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop))))

;;; Timing #1656

i 7/5/88

;v Written by: Bill O'Farrell

i1y Modified by: David Myers

;;; Description: Each PE sends to itself with overwrite.
i3 Active Processors: All

;7 Sise of Data Used: 45 bit unsigned integers.

(*defun time-test15 (time-loop test-loop)
(format *fp* "~ % TIME-TEST15~%"
(format *data* "~ % TIME-TEST15"%")
(:etq values (make-array '(100) :fill-pointer 0))
all
(*let ((v45 (randoml! (!! (the tixnum (ash 1 45)))))
v45dest (randomif (It (the fixaum (ash 2 46}))))
self (the (feld-pvar cm:*cube-address-length®)(self-addressit)))
dest-address (!! (the fixnum 0))))
(declaze (type (Beld-pvar 45) v45))
declare (type (field-pvar 45) v45dest))
declare (type (field-pvar cm:*cube-address-length®) dest-address))
{declare (type (field-pvar cm:*cube-address-length*) self))
(enable-all)
(dotimes (i time-loop)
(format t "~d~%" i)
{multiple-value-bind (a cm-time b ¢)
(cm:time

Appendix B: final-syracuse-test.lisp

TR 88.19 -84 - December 1988

{dotimes (j test-loop)
(*pset :overwrite v45 v45dest self))
:return-statistics-only-p t)
{vector-push (/ cm-time test-loop) values)))
{concentration self)
(statistics values time-loop))))

;»» Timing #16

;i 7/5/88

i Written by: Bill O'Farrell

;s Modified by: David Myers

;;; Description: Each PE sends to itself with :no-collisions.
ii; Active Processors: All

;3 Size of Data Used: 45 bit unsigned integers.

("defun time-test16 (time-loop test-loop)
(format *fp* ""%TIME-TEST16"%")
{format *data* ""%TIME-TEST16"%")
(setq values (make-array '(100) :fll-pointer 0))
(*all
{*let {(v45 (random!! (!! (the fixnum (ash 1 45)))))
(v45dest (random!! (!t {the fixaum (ash 1 45)))))
(self (the (Seld-pvar cm:*cube-address-length*)(self-addressit)))
(dest-address (!! (the fixnum 0))))
(declare (type (field-pvar 45) v45))
(declare (type (field-pvar 45) v45dest))
(declare (type (field-pvar cm:*cube-address-length*) dest-address))
(declare (type (field-pvar cm:*cube-address-length*) self))
(enable-all)
(dotimes (i time-loop)
(format t "~d~%" i)
{multiple-value-bind (a cm-time b ¢)
(cm:time
(dotimes (j test-loop)
(*pset :no-collisions v45 v4Sdest self))
:return-statistics-only-p t)
((vect:r-:)'ulh ({f;:m—time test-loop) values)))
concentration sel
(statistics values time-loop))))

ii; Timing #17

w 7/5/88

v Written by: Bill O’Farrell
;31 Modified by: David Myers

Description: Each PE sends to a random location with overwrite.
B The paris call cm:send-with-overwrite is used.
iy Active Processors: All
;i Size of Data Used: 45 bit unsigned integers.
(*defun time-test17 (time-loop test-loop)
{format *fp* "R TIME-TEST17"%")
(format *data* "% TIME-TEST17"%")
(setq values (make-array ’(100) :fill-pointer 0))
*all
((*1et ((v45 (random!! (1! (the fixnum (ash 1 45)))))
{v45dest (random!! (1! (the fixnum (ash 1 45)))))
(dest-address (random!! (It (the fixaum (ash 1
cm:*cube-address-length*})))))
{declare (type (Geld-pvar 45) v45))
declare {type (feld-pvar 45) v45dest))
declare ﬁtype (fleld-pvar ecm:*cube-address-length*) dest-address))
(enable-all)
(let ((v45-addr (pvar-location v45))
vdSdest-addr (pvar-location v45dest))
dest-address-addr (pvar-location dest-address)))
(declare (type integer v45-addr v45dest-addr dest-address-addr))
(dotimes (i time-loop)
(format ¢ ""d"%" i)
(muitiple-value-bind (a cm-time b ¢)
(cm:time
with-paris-from-*lisp
dotimes (j test-loop)
(cm:send-with-overwrite v45dest-addr dest-address-addr

Appendix B: final-syracuse-test.lisp

TR 88.19 - 85 - December 1988

v45-addr 45)))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop)))))

;»» Timing #18

1 7/5/88
31y Written by: Bill O'Farrell
i+ Modified by: David Myers

; Description: Each PE sends to (max-PE-# - self-address). The paris call
Y cm:send is used.

i+s Active Processors: All

;33 Sizse of Data Used: 45 bit unsigned integers.

(*defun time-test18 (time-loop test-loop)
(format *fp* "~ %TIME-TEST18"%")
format *data* ""%TIME-TEST18"%")
(aetq values (make-array '(100) :fill-pointer 0))
*all
(*let ((v45 (random!! (!! (the fixnum (ash 1 45)))))
(v45dest (random!! (!! (the fixnum (ash 1 45)))))
(dest-address (-!! (!! (the fixnum (- cm:*user-cube-address-limit* 1)))
(the {field-pvar cm:*cube-address-length*)(self-address!!)))))
{declare %type (eld-pvar 45) v45))
{declare (type (field-pvar 45) v45dest))
%declare (t])rpe (Beld-pvar cm:*cube-address-length*) dest-address))
enable-all :
(let ((v45-addr (pvar-location v45))
}v45delt-addr (pvar-location v45dest))
dest-address-addr (pvar-location dest-address)))
(declare (type integer v45-addr v45dest-addr dest-address-addr))
(dotimes (i time-loop)
{format ¢t ""d"%" i)
(multiple-value-bind (a cm-time b ¢)
{cm:time
(with-paris-from-*lisp
(dotimes (j test-loop)
(cm:send v45dest-addr dest-address-addr v45-addr 45)))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
concentration dest-address)
statistics values time-loop)))))

i+ Timing #19

i 1/5/88

i; Written by: Bill O’Farrell
;3 Modified by: David Myers

; Description: Each PE sends to (- max-pe-address self-address) with
:no-collisions.

;v Active Processors: All

;3 Size of Data Used: 45 bit unsigned integers.

112
(*defun time-test1¢ (time-loop test-loop)
format *fp* "~%TIME-TEST19°%"
format *data* "~ % TIME-TEST19"%")
(secq values (make-array '(100) :fll-pointer 0))
*all
{*1et ((v45 (random!! (!! (the Axnum (ash 1 45)))))
v45dest (random!! (!! (the fixnum (ash 1 46)))))
dest-address (! (!! (the ixnum (- cm:*user-cube-address-limit* 1)))
{the (field-pvar cm:*cube-address-length*)(self-address!!)))))
declare (type (field-pvar 45) v45))
declare (type (field-pvar 45) v45dest))
declare (type (field-pvar cm:*cube-address-length*) dest-address))
enable-all)
dotimes (i time-loop)
format ¢t "“d~%" i)
multiple-value-biad (a cm-time b ¢)
(cm:time
(dotimes (j test-loop)
{*pset :no-collisions v45 v45dest dest-address))
:return-statistics-only-p t)

Appendix B: final-syracuse-test.lisp

TR 88.19 - 86 -

{vector-push (/ cm-time test-loop) values)))
{concentration dest-address)
(statistics values time-loop))))

;i Timing #20

i 7/5/88

;i Written by: Bill O’Farrell

i Modified by: David Myers

;51 Description: Each PE sends to (- max-pe-address self-address) with
e :overwrite

;i1 Active Processors: All

;3 Sise of Data Used: 45 bit unsigned integers.

(*defun time-test20 (time-loop test-loop)
(format *fp* "~% TIME-TEST20"%")
(format *data* "~ %TIME-TEST20"%")
setq values {(make-array ’(100) :fill-pointer 0))
*all
(*let {(v45 (random!! (!! (the ixnum (ash 1 45)))))
§v45dut (random!! (1! (the fixnum (ash 1 45)))})

dest-address (-!! {!! {the fixaum (- cm:*user-cube-address-limit* 1)))

{the (Beld-pvar cm:*cube-address-length*)(self-address!t)))))
(declare (type (feld-pvar 45) v45))
(declare (type (field-pvar 45) v45dest))
(declare (type (feld-pvar cm:*cube-address-length*) dest-address))
(enable-all)
(dotimes (i time-loop)
(format t "~d~%" i)
(multiple-value-bind (a cm-time b ¢}
(cm:time
(dotimes (j test-loop)
(*pset :overwrite v45 v45dest dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop))))

;;; Timing #21

;i 7/5/88

;i Written by: Bill O’'Farrell

;i; Modified by: David Myers

;i1 Description: All PEs send to a random address, with :overwrite,
HH then the receiving PEs (64% of all PES) send data

i back to one of their original sending PEs.

;v Active Processors: All

;i1 Size of Data l_Jled: 45 bit unsigned integers.

(*defun time-test21 (time-loop test-loop)

(format *fp* "~ % TIME-TEST21"%")

(format *data® "~ % TIME-TEST21"%")

(setq values (make-array '(100) :Bli-pointer 0))

*all

(*let ((v45 (random!! (1! (the fixnum (ash 1 45)))))
v45dest (random!! (!! (the fixnum (ash 1 45)))))
rcvd-address (I! (the fixaum 0)))
dest-address (random!! (! (the fixaum (ash 1

. cm:*cube-address-length*))))))

type (field-pvar 45) v45))
declare (type (feld-pvar 45) v45dest))
declare (type (field-pvar cm:*cube-address-length*) dest-address))
declare (type (fleld-pvar cm:*cube-address-length®) rcvd-address))
dotimes (i time-ioop)
§enablo-t.ll)

gdechu

format t "~d"%" i)
*pset :overwrite (the (feld-pvar cm:*cube-address-length*)
(seif-addresst!)) rcvd-address dest-address)
(*when (/=1 rcvd-address (!! {the fxoum 0)))
(multiple-value-bind (a cm-time b ¢)
(cm:time
(dotimes {j test-loop)
(*pset :no-collisions v45 v45dest rcvd-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values))))

December 1988

Appendix B: final-syracuse-test.lisp

TR 88.19

- 87 -

(concentration dest-address)
(statistics values time-loop))))

; Timing #22

; 7/5/88

; Written by: Bill O’Farrell

; Modified by: David Myers

; Description: Every processor receiving data receives exactly 2
messages.

; Active Processors: All

; Size of Data Used: 45 bit unsigned integers.

W
(*defun time-test22 (time-loop test-loop)

(

format *fp* ""%TIME-TEST22"%")

(format *data* "~%TIME-TEST22"%")
(setq values (make-array ’(100) :fll-pointer 0))
(*all ‘

(*let ((v45 (random!! (1t (the fixnum (ash 1 45)))))
(v45dest (random!! {!! (the fixnum (ash 1 45)))))
(dest-address (-!t (!! (the fixaum (- cm:*user-cube-address-limit* 1)))
(the (field-pvar cm:*cube-address-length*)(self-address!!)))))
(declaze (type (Geld-pvar 45) v45))
(declare (type (field-pvar 45) v45dest))
%declbalre ;(ltﬂp‘ (Beld-pvar cm:*cube-address-length*) dest-address))
enable-
(*when (oddp!! dest-address)
(*set dest-address (1-1! dest-address)))
(dotimes (i time-loop)
(format t "~d~%" i)
(multiple-value-bind {a cm-time b c)
{cm:time
(dotimes (j test-loop)
(*pset :overwrite v45 v45dest dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values))) - -
(concentration dest-address) :
(statistics values time-loop))))

; Timing #23

; 7/5/88

; Written by: Bill O'Farrell

; Modified by: David Myers

; Description: Every processor receiving data receives exactly 4
messages.

; Active Processors: All

; Size of Data Used: 45 bit unsigned integers.

("defun time-test23 (time-loop test-loop)

(

format *fp* "~ % TIME-TEST23"%")

(format *data* "~% TIME-TEST23"%")
(setq values (make-array '(100) :fill-pointer 0))
(*all

(*let ((v45 (random!! (1t ithe fixnum (ash 1 45)))))
(v45dest {(random!! (!! (the fixnum (ash 1 45)))))

(dest-address {-!! (!t (the ixnum (- cm:*user-cube-address-limit* 1)))

(the (Beld-pvar cm:*cube-address-length*)(self-address!t)))))
declare (type (feld-pvar 45) v45))
declare (type (field-pvar 45) v45dest))
declare (type (field-pvar cm:*cube-address-length*) dest-address))
(enable-all)
(*set dest-address (the {field-pvar cm:*cube-address-length*)
deposit-byte!! dest-address (! (the fixnum 0))
11 (the fixnum 2))(!! (the fixnum 0)))))
(dotimes (i time-loop)
format t ""d"%" i)
multiple-value-bind (a cm-time b ¢)
(cm:time
{dotimes (j test-loop)
(*pset :overwrite v45 v45dest dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop))))

December 1988

Appendix B: final-syracuse-test.lisp

TR 88.19 - 88 -

;v Timing #24

;i 7/5/88

i Written by: Bill O'Farrell

;3 Modified by: David Myers

;i Description: Every processor receiving data receives exactly 8
HH messages.

i Active Processors: All

111 Size of Data Used: 45 bit unsigned integers.

(*defun time-test24 (time-loop test-loop)
(format *fp* "~% TIME-TEST24"%")
(format *data* "% TIME-TEST24~%")
(setq values (make-array '(100) :fill-pointer 0))
(*all
(*1et {(v45 (random!! (!! (the fixnum (ash 1 45)))))
(v45dest (random!! (!f (the fixnum (ash 1 45)))))
{dest-address (-!! (1! (the fixnum (- cm:*user-cube-address-limit* 1)))
(the (field-pvar cm:*cube-address-length*)(self-address!!)))))
(declare (type (field-pvar 45) v45))
(declare (type (Beld-pvar 45) v45dest))
}declare (type (field-pvar cm:*cube-address-length*) dest-address))
enable-all)
(*set dest-address (the (fieid-pvar cm:*cube-address-length*)(deposit-byte!!
dest-address (!! (the fixnum 0})(!! (the fixaum 3))
" t'(” [th(e f_xnu:n 0)))))
otimes (i time-loop
(format ¢t "~d~%" i)
(multiple-value-bind (a em-time b c)
cm:time
((dotimes (j test-loop)
(*pset :overwrite v45 v45dest dest-address))
:returp-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
{concentration dest-address)
(statistica values time-loop))))

i3; Timing #28

i T)5/88

i Written by: Bill O'Farrell

;17 Modified by: David Myers

;;; Description: Every processor receiving data receives exactly 16
A messages.

;i Active Processors: All

111 Size of Data Used: 45 bit unsigned integers.

(*defun time-test25 (time-loop test-loop)
(format *fp* "~%TIME-TEST25"%")
(format *data* "“% TIME-TEST25"%")
%s*etq values {make-array ’(100) :fill-pointer 0))
a]l
(*let ({v45 (random!! (! {the ixnum (ash 1 45)))))
v45dest (random!! (! (the fixnum (ash 1 45)))))
dest~address (-!! (! (the fixnum (- cm:*user-cube-address-limit* 1)))
(the {Beld-pvar cm:*cube-address-length*)(self-address!!)))))
(declare (type (feld-pvar 45) v45))
declare (type (feld-pvar 45) v4Bdest))
declare (type {field-pvar cm:*cube-address-length*) dest-address))
enable-all)
*set dest-address (the (feld-pvar em:*cube-address-length*)(deposit-byte!!
dest-address (1! {the ixnum 0))(!! (the fixnum 4))
(1! (the fixnum 0))))}
{dotimes (i time-loop)
format ¢ "~d"%" i)
multiple-value-bind (a cm-time b c}
(cm:time
(dotimes {j test-loop)
(*pset :overwrite v45 v45dest dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
concentration dest-address)
statistics values time-loop))))

December 1988

Appendix B: final-syracuse-test.lisp

TR 88.19 -89 -

v Timing #26

s 7/5/88

351 Written by: Bill O'Farrell

i»» Modifled by: David Myers

i+ Description: Every processor receiving data receives exactly 32
i messages.

i1y Active Processors: All

i+ Size of Data Used: 45 bit unsigned integers.

(*defun time-test26 (time-loop test-loop)
(format *fp* "~%TIME-TEST26"%")
(format *data* "~%TIME-TEST26~%")
(setq values (make-array ’(100) :fill-pointer 0))
(*all
(*let ({(v45 (random!! (!! (the fixaum (ash 1 45)))))
(v45dest {random!! (1! (the fixnum (ash 1 45)))))
(dest-address (-1! (1! (the fixnum (- em:*user-cube-address-limit* 1)))
(the (eld-pvar cm:*cube-address-length*)(self-address!!)))))
(declare (type (field-pvar 45) v45))
(declare {type (Geld-pvar 45) v45dest))
(declare (type (field-pvar cm:*cube-address-length*) dest-address))
{enable-all)
(*set dest-address (the {field-pvar cm:*cube-address-length*)(deposit-byte!!
dest-address {!! {the fixnum 0))(!! (the fixnum 5))
(1! (the ixnum 0)))))
(dotimes (i time-loop)
(format t "~d"%" i)
(multiple-value-bind (a cm-time b c)
(em:time
(dotimes (j test-loop)
(*pset :overwrite v45 v45dest dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop))))

v Timing #27

iy 7/5/88

;v Written by: Bill O’'Farrell

i1» Modified by: David Myers

i+ Description: Every processor receiving data receives exactly 64
1 messages.

;i Active Processors: All

++; Size of Data Used: 45 bit unsigned integers.

(*defun time-test27 (time-loop test-loop)
(format *fp* "~%TIME-TEST27"%")
(format *data* "~ % TIME-TEST27"%")
(setq values (make-array '(100) :fll-pointer 0))
(*all
(*let ((v45 (random!! (1! (the fixnum (ash 1 45)))))
v45dest (randoml! (1! (the ixnum (ash 1 45)))))
dest-address (-!! (1! (the fixaum (- ¢cm:*user-cube-address-limit* 1))
(the (field-pvar cm:*cube-address-length*)(self-address!!)))))
declare (type (field-pvar 45) v45))
declare (type (field-pvar 45) v45dest))
declare (type (field-pvar cm:*cube-address-length®) dest-address))
enable-all)
*set dest-address (the (field-pvar cm:*cube-address-length*)(deposit-bytet!
dest-address (!! {the fixnum 0)){!! (the fixnum 6))
(1 (the fxnum 0)))))
(dotimes (i time-loop)
format t ""d~%" i)
multiple-value-bind (a cm-time b ¢)
(cm:time
(dotimes (j test-loop)
(*pset :overwrite v45 v45dest dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
concentration dest-address
statistics values time-loop))))

::: Timing #28

December 1988

Appendix B: final-syracuse-test.lisp

TR 88.19 . - 90 - December 1988

i T7/5/88

;33 Written by: Bill O'Farrell

;i1 Modified by: David Myers

;i Description: Every processor receiving data receives exactly 128
i messages.

ii; Active Processors: All

333 Size of Data Used: 45 bit unsigned integers.

(*defun time-test28 {tirne-loop test-loop)
(format *fp* ""%TIME-TEST28°%")
{format *data* "~ % TIME-TEST28"%")
(setq values (make-array *(100) :f1l-pointer 0))
*all
(*let ((v45 (random!! (!! (the fixaumn (ash 1 45))}))
(v45dest (random!! (!! (the fixaum (ash 1 45)))))
(dest-address (-!! (!! (the fixnum (- em:*user-cube-address-limit* 1)))
(the (field-pvar ¢cm:*cube-address-length*)(self-address!!)))))
(declare (type (field-pvar 45) v45))
(declare (type (field-pvar 45) v45dest))
(declare (type (field-pvar cm:*cube-address-length*) dest-address))
(enable-ali)
(*set dest-address (the (field-pvar em:*cube-address-length*)(deposit-byte!!
dest-address (!! (the fixnum 0))(!! (the fixnum 7))
(" (the xnum 0)))))
{dotimes (i time-loop)
(format t "~d~%" i)
(multiple-value-bind (a cm-time b ¢}
(em:time
(dotimes (j test-loop)
(*pset :overwrite v45 v45dest dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
{concentration dest-address)
(statistics values time-loop))))

;v Timing #29

W 7/5/88

i1s Written by: Bill O’Farrell

;7 Modified by: David Myers

ii; Description: Every processor receiving data receives exactly 256
HS messages.

;;; Active Processors: All

;;; Size of Data Used: 45 bit unsigned integers.

(*defun time-test29 (time-loop test-loop)
(format *fp* "% TIME-TEST29"%")
(format *data* "% TIME-TEST29"%")
(setq values (make-array '(100) :fill-pointer 0))
(*all
(*let ((v45 (random!! (! {the fixnum (ash 1 45)))))
(v45dest (randomlt (It (the fixnum (ash 1 45)))))
(dest-address (-!! (1! (the fixnum (- cm: *user-cube-address-limit* 1)))
(the (field-pvar cm:*cube-address-length*)(self-address!t)))))
(declare {type (field-pvar 45) v45))
(declare (type (Seld-pvar 45) v45dest))
{declare (type {Beld-pvar cm:*cube-address-length*) dest-address))
(enable-all) .
(*set dest-address (the (Beld-pvar cm:*cube-address-length*)(deposit-byte!!
dest-address (!! (the ixaum 0))(!! {the fixnum 8))
(1! (the fixnum 0)))))
(dotimes (i time-loop
(format t "~"d~%" i)
(multiple-value-bind {a cm-time b ¢)
(cm:time
(dotimes (j test-loop)
(*pset :overwrite v45 v45dest dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop))))

i Timing 30
i 7/5/88

Appendix B: final-syracuse-test.lisp

TR 88.19

"y

-91-

Written by: Bill O’Farrell

; Modified by: David W. Myers

Deacnptlon This program times a send with overwrite of two
10 bit unsigned integers to random locations

Active Processors: Al

Size of Data Used: 10 bit unsigned integers

(*defun time-test30 (time-loop test-loop)
(format *fp* "~ %TIME-TEST30"%")
(format *data* "~%TIME-TEST30"%")

(setq values (make-array '(100) :fill-pointer 0))
(*all

(*let ((v10 (random!! (!t (the fixnum (ash 1 10)))))
(v10dest (randomt! (1! (the fixnum (ash 1 10)))))
(dest-address (random!! (! (the fixnum (ash 1
cm:*cube-address-length*})))))
(declare (type (feld-pvar 10) v10))
(declare (type (field-pvar 10) v10dest))
(declare (type (field-pvar cm:*cube-address-length*) dest-address))
(enable-all)
(dotimes (i time-loop)
format t "“d~%" i)
multiple-value-bind (a cm-time b ¢}
(em:time
{dotimes (j test-loop)
(*pset :overwrite v10 v10dest dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop))))

;3 Timing #31

i 7/5/88

;i Written by: Bill O’Farrell
3 Modified by: David Myers

; Description: Each PE sends to {- mu-pe-addren self-address) with

:no-collisions specified wnthm *pset.

; Active Processors: All
; Size of Data Used: 10 bit unsigned integers.

(*defun time-test31 (time-loop test-loop)
(format *fp* "% TIME-TEST31"%")
(format *data* "~%TIME-TEST31"%")

(ietq values (make-array '(100) :fill-pointer 0})
(*all

(*1et ((v10 (random!! (! (the fixnum (ash 1 10)))))
(v10dest (randoml! (1! (the fixnum {ash 1 10)))))
(dest-address {-!! (!! (the ixnum (- cm:*user-cube-address-limit* 1)))
(the (feld-pvar cm:*cube-address-length*)(self-address!!))}))
{declare (type (field-pvar 10) v10))
(declare (type (feld-pvar 10 v10de|t))
declare (type (feld-pvar em:*cube-address-length*) dest-address))
enable-all)
dotimes (i time-loop)
format t ""d~%" i)
multiple-value-bind (a em-time b c)
(cm:time
(dotimes (j test-loop)-
(*pset :no-collisions v10 v10dest dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
concentration dest-address)
statistics values time-loop))))

; Timing #32

i 7/5/88
;7 Written by: Bill O'Farrell
i1 Modified by: David Myers

; Description: 2048 processors all send to random locations

and :overwrite is specified. This program is written

for 8k processors. If more than 8k processors are used,

then the (*when ...) expression must be changed.
Active Processors: self-address mod 4 = 0

December 1988

Appendix B: final-syracuse-test.lisp

TR 88.19 -92 - December 1988

1;; Sise of Data Used: 45 bit unsigned integers.

1)
(*defun time-test32 (time-loop test-loop)
(format *fp* "~%TIME-TEST32"%")
{format *data* "% TIME-TEST32"%")
%:etq values (make-array '(100) :fill-pointer 0))
all
(*let ((v45 (random!! (1! {the Axnum (ash 1 45)))))
(v45dest (randoml! (1! (the fixnum (ash 1 45)))))
(dest-address (random!! (!! (the fixnum
(ash 1 cm:*cube-address-length*))))))
(declare (type (feld-pvar 45) v45))
(declare (type (Geld-pvar 45) v45dest))
(declare (type (feld-pvar cm:*cube-address-length*) dest-address))
(dotimes (i time-loop})
(enable-all)
(format ¢t "~d~%" i)
(*when {=! (!! (the fixnum 0))(mod!! (the (field-pvar
cm:*cube-address-length*)(self-address!t))(!! {the fixnum 4))))
(format t "~ %number of processors: “D~%"(cm:global-count cm:context-flag))
(multiple-value-bind (a cm-time b ¢}
(em:time
(dotimes (j test-ioop)
(*pset :overwrite v45 v45dest dest-address))
:return-statistics-only-p t)
(vector-push {/ cm-time test-loop) values))))
(concentration dest-address)
(statistics values time-loop))))

;33 Timing #33

i 7/8/88
;7 Written by: Bill O’Farrell
i+ Modified by: David Myers

; Description: 2048 processors send to locations (max-PE-# - self-address)
and :no-collisions is specified. This program is written
for 8k processors. If more than 8k processors are used,
then the (*when ...) expression must be changed.
;33 Active Processors: self-address mod 4 = 0
;i Size of Data Used: 45 bit unsigned integers.
N
(*defun time-test33 (time-loop test-loop)
(format *fp* ""%TIME-TEST33"%")
(format *data® "~%TIME-TEST33"%")
(setq values (make-array ’(100) :fll-pointer 0))
*all
(*let ((v45 (randoml! (!! {the fixaum (ash 1 45))}))
(v45dest (randomi! (1! {the fixnum (ash 1 45)))))
(dest-address (-1! (1! (the fixnum (- cm:*user-cube-address-limit* 1)))
{the (field-pvar cm:*cube-address-length*)(self-address!l)))))
(declare (type (Beld-pvar 45) v45))
(declare (type (field-pvar 45) v45dest))
{declare {type (field-pvar cm:*cube-address-length*) dest-address}))
(dotimes (i time-loop)
(entble-all)
(format t "~d~%" i)
{*when (= {!! {the ixnum 0))(mod!! (the {feld-pvar
cm:*cube-address-length*)(self-addresst!))(!! (the fixnum 4))))
format ¢ "~%number of processors: “D~%"(cm:global-count cm:context-flag))
multiple-value-bind (a cm-time b ¢)
(cm:time .
(dotimes (j test-loop)
(*pset :no-collisions v45 v45dest dest-address))
:return-statistics-only-p ¢)
(vector-push (/ cm-time test-loop) values))))
concentration dest-address)
statistics values time-loop))))

;3; Timing #34

5 7/6/88

i;; Written by: Bill O’Farrell

;7 Modified by: David Myers

; Description: 2048 processors send to locations (max-PE-# - self-address)
and :overwrite is specified. This program is written

Appendix B: final-syracuse-test.lisp

TR 88.19 -93 - December 1988

e for 8k processors. If more than 8k processors are used,
HH then the (*when ...) expression must be changed.

s Active Processors: self-address mod 4 = 0

s Size of Data Used: 45 bit unsigned integers.

(*defun time-test34 (time-loop test-loop)
(format *fp* "% TIME-TEST34"%")
{format *data* "% TIME-TEST34"%")
(:etq values {make-array '(100) :fill-pointer 0))
all
(*let ({v45 (random!! {!! (the fixnum (ash 1 45)))))
(v45dest (random!! (!! (the fixnum (ash 1 45)))))
(dest-address (-!! (1! (the fixnum (- cm:*user-cube-address-limit* 1)))
(the {field-pvar cm:*cube-address-length*)(self-address!!)))))
(declare (type (field-pvar 45) v45))
(declare (type (field-pvar 45) v4Sdest))
(declare (type (field-pvar cm:*cube-address-length*) dest-address))
(enable-all)
(*when (=! (1! (the fixaum 0))(mod!! (the (8eld-pvar
cm:*cube-address-length*)(self-address!!))(!! (the fixnum 4)}))
(dotimes (i time-loop)
(multiple-value-bind (a cm-time b c)
(cm:time
(dotimes (j test-loop)
(*pset :overwrite v45 v45dest dest-address))
:return-statistics-only-p t)
(vector-push {/ cm-time test-loop) values)))
(concentration dest-address))
(statistics values time-loop))))
;i Timing #35
i 7/6/88
i1; Written by: Bill O'Farrell
;7 Modified by: David Myers
;;; Description: 2048 processors all send to random locations
W and :overwrite is specified. This program is written
W for 8k processors. If more than 8k processors are used,
B then the (*when ...) expression must be changed.
;i Active Processors: self-address mod 4 = 0
i+ Size of Data Used: 10 bit unsigned integers.

1
(*defun time-test35 (time-loop test-loop)
format *fp* "% TIME-TEST35"%")
format *data* "% TIME-TEST35"%")
(setq values (make-array ’(100) :fill-pointer 0))
(*all
(*let {{v10 (random!! (!! (the fixnum (ash 1 10))}))
(v10dest (random!! (!! {the fixnum (ash 1 10)))))
(dest-address (random!! (!! (the fixnum
(ash 1 cm:*cube-address-length*))))))
(declare (type (field-pvar 10) v10))
(declare (type {Geld-pvar 10) v10dest))
(declare (type (Beld-pvar cm:*cube-address-length*) dest-address))
(dotimes (i time-loop)
(enable-all)
format ¢ "~d~%" i)
*when (=!! (1! (the fixaum 0))(mod!! (the (feld-pvar
cm:*cube-address-length*)(self-addressi!))(!t (the ixnum 4))))
(format ¢ "~"%number of processors: “D~%"(cm:global-count cm:context-fag))
(multiple-value-bind (a cm-time b ¢)
(cm:time
(dotimes (j test-loop)
(*pset :overwrite v10 v10dest dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values))))
(concentration dest-address
(statistics values time-loop))))

i1 Timing #39

i 7/6/88

;i Written by: Bill O'Farrell

;17 Modified by: David Myers

;;; Description: 512 processors all send to random locations

i and :overwrite is specified. This program is written

Appendix B: final-syracuse-test.lisp

TR 88.19 -94 - December 1988

HH for 8k processors. If more than 8k processors are used,
HH then the (*when ...) expression must be changed.
1+ Active Processors: self-address mod 4 = 0
++; Size of Data Used: 10 bit unsigned integers.
{*defun time-test39 (time-loop test-loop)
(format *fp* "% TIME-TEST39"%")
(format *data* ""%TIME-TEST39"%")
(setq values {make-array ’(100) :fll-pointer 0))
*all
(*let ((v10 (random!! (!! (the fixpum (ash 1 10)))))
(v10dest (random!! (!! (the fixnum (ash 1 10)))))
(dest-address (random!! (!! (the fixnum
(ash 1 cm:*cube-address-length*})))))
(declare (type (Geld-pvar 10) v10))
(declare (type (field-pvar 10) v10dest))
(declare (type (feld-pvar cm:*cube-address-length*) dest-address))
{dotimes (i time-loop)
(enable-all)
{format t “"d~%" i)
(*when (=!! (! (the fixnum 0))(mod!! (the (eld-pvar
cm:*cube-address-length*)(self-address!!))(!! {the fixnum 186))))
(format ¢ "~%number of processors: "D~ % "(cm:global-count cra:context-flag))
(multiple-value-bind (a cm-time b ¢)
(em:time
(dotimes (j test-loop)
(*pset :overwrite v10 v10dest dest-address))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values))))
(concentration dest-address)
(statistics values time-loop))))

i+ Timing #45

i 7/5/88

i Written by: Bill O'Farrell

;7 Modified by: David Myers

;i1 Description: Each PE reads from a random location.
B The paris call cm:get is used.

i+s Active Processors: All

i+ Size of Data Used: 45 bit unsigned integers.

(*defun time-test45 (time-loop test-loop)
(format *fp* "% TIME-TEST45~%")
(format *data* "“%TIME-TEST45"%")
(:etltll values (make-array '(100) :fill-pointer 0))
a
(*1et ((v45 (random!! (1! (the fixnum (ash 1 45)))))
(v45dest (random!! (!! (the fixnum (ash 1 45)})))
(dest-address (randomi! (1! (the ixaum (ash 1
cm:*cube-address-length*))))))
(declare (type (Beld-pvar 45) v45))
(declare (type (field-pvar 45) v45dest))
(declare (type (Beld-pvar cm:*cube-address-length*) dest-address))
{let {(v45-addr (pvar-location v45))
(v45dest-addr (pvar-location v45dest))
(dest-address-addr (pvar-location dest-address)))
{declare (type integer v45-addr v45dest-addr dest-address-addr))
(dotimes (i time-loop)
{enable-all)
format t ""d"%" i)
multiple-value-bind (a cm-time b ¢)
(em:time
‘with-paris-from-*lisp
dotimes (j test-loop)
(cm:get v45dest-addr dest-address-addr v45-addr 45)))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
concentration dest-address)
statistics values time-ioop)))))

;7 Timing #47
3 7/5/88
33+ Written by: Bill O’Farrell

Appendix B: final-syracuse-test.lisp

TR 88.19

H1
"
W
H1
"

-95- December 1988

Modified by: David Myers

Description: Each PE reads from a random location.
A *lisp call is used.

Active Processors: All

Size of Data Used: 45 bit unsigned integers.

(*defun time-test47 (time-loop test-loop)

(
(

format *fp* "~ B TIME-TEST47"%")
format *data* "“%TIME-TEST47"%")

(setq values (make-array ’(100) :fill-pointer 0))
(*all

(*let ((v45 (random!! (! (the fixnum (ash 1 45)))))
(v45dest (!! {the ixaum 0)))
(dest-address (random!! (!! (the fixnum (ash 1
cm:*cube-address-length*))))))
(declare (type (field-pvar 45) v45))
(declare (type (field-pvar 45) v45dest))
(declare (type (field-pvar cm:*cube-address-length*) dest-address))
(enable-all)
(dotimes (i time-loop)
(format t ""d~%" i)
{multiple-value-bind (a cm-time b ¢)
(cm:time
(dotimes (j test-loop)
(*set v45dest (prefl! v45 dest-address :collisions-allowed)))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop))))

; Timing #48

; 7/5/88

; Written by: Bill O'Farrell
; Modified by: David Myers

Description: Each PE reads from a random location.
A *lisp call is used.

; Active Processors: All
; Size of Data Used: 45 bit unsigned integers.

(*defun time-test48 (time-loop test-loop)
(format *fp* "~ % TIME-TEST48%")
(format *data* "% TIME-TEST48"%")
(ietq values (make-array ’(100) :fill-pointer 0))
(*all

(*1et ((v46 (random!! (! (the fixnum (ash 1 45)))))
(v45dest (! (the fixaum 0)))
(dest-address (-1! (11 (the fixnum (- cm:*user-cube-address-limit* 1)))
(ded ‘(t:l; p(eﬂe;d-lsvu cn;:;cu:;-);ddrul-length')(self-addreu!!)))))
eclar eld-pvar 45) v
(declare (type gﬂeld-pvu 45; v4bdest))
Edechre (t§pe field-pvar cm:*cube-address-length*) dest-address))
enable-all
(dotimes (i time-loop)
format ¢ ""d~%" i)
multiple-value-bind (a cm-time b ¢)
(cm:time
{dotimes (j test-loop)
(*set v4bdest (prefll v45 dest-address :no-collisions}))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop)))))

+ Timing #49

i 7/6/88

i1 Written by: Bill O’Farrell

i+ Modifled by: David Myers

iii Description: Each PE reads from a unique location,
HH cm:get is used.

i1: Active Processors: All

33» Sise of Data Used: 45 bit unsigned integers.

(*defun time-test49 (time-loop test-loop)

Appendix B: final-syracuse-test.lisp

TR 88.19 - 96 - December 1988

(format *fp* "~ % TIME-TEST49"%")
(format *data* "% TIME-TEST49"%")
E:etq values (make-array '(100) :fill-pointer 0))
all
(*let ((v45 (random!! (!! (the fixnum (ash 1 45)))))
(v45dest (random!! (! (the Sxnum (ash 1 45)))))
(dest-address {-!! (!! (the ixaum (- cm:*user-cube-address-limit* 1)))
(the {feld-pvar cm:*cube-address-length®)(self-address!!)))))
(declare (type (field-pvar 45) v45))
(declare (type (field-pvar 45) v45dest))
(declare (type {field-pvar cm:*cube-address-length*) dest-address))
(let ((v45-addr (pvar-location v45))
(v45dest-addr (pvar-location v45dest))
{dest-address-addr (pvar-location dest-address)))
{declare {type integer v45-addr v45dest-addr dest-address-addr))
(dotimes (i time-loop)
(enable-all}
(format t "~d~%" 1)
(multiple-value-bind (a cm-time b c)
(cm:time
(with-paris-from-*lisp
{dotimes (j test-loop)
{cm:get v45dest-addr desi-address-addr v45-addr 45)))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statistics values time-loop)))))

;s Timing #50

i3 7/6/88

35+ Written by: Bill O'Farrell
ivi Modified by: David Myers

i1+ Description: Every processor receiving a read request, receives
exactly 2 request. cm:get is used.

;13 Active Processors: All

i1+ Size of Data Used: 45 bit unsigned integers.

"
(*defun time-test50 (time-loop test-loop)
(format *fp* "~ %TIME-TEST50"%"
(format *data* "% TIME-TEST50"%")
(setq values (make-array '(100) :fll-pointer 0))
*all
(*let ((v45 (random!! (!t (the fixnum (ash 1 45)))))
{v45dest (random!! (! (the fixnum (ash 1 45))))}
(dest-address (-!t (!! {the fixnum (- cm:*user-cube-address-limit* 1)))
(the (feld-pvar cm:*cube-address-length*)(self-addressi!}))))
(declare (type {field-pvar 45) v45))
{declare (type (field-pvar 45) v45dest))
(declare (type (field-pvar em:*cube-address-length*) dest-address))
(enable-all)
(*when (oddp!! dest-address)
(*set dest-address (1-1 dest-address)))
(let ((v45-addr (pvar-location v45))
v45dest-addr {pvar-location v45dest))
dest-address-addr (pvar-location dest-address)))
(declare (type integer v45-addr v4Sdest-addr dest-address-addr))
(dotimes (i time-loop)
(enable-all)
(format t ""d~%")
{multiple-value-bind (a cm-time b c)
(cm:time
(with-paris-from-*lisp
(dotimes (j test-loop)
(cm:get v46dest-addr dest-address-addr v45-addr 45)))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
concentration dest-address)
statistics values time-loop)))))
"

;33 Timing #51

i 7/6/88
;i1 Written by: Bill O'Fazrell
;i3 Modified by: David Myers

Appendix B: final-syracuse-test.lisp

TR 88.19 - 97 -

;;; Description: Every processor receiving a read request, receives
exactly 4 request. cm:get is used.

i+i Active Processors: All

i3 Size of Data Used: 45 bit unsigned integers.

(*defun time-test51 (time-loop test-loop)
(format *fp* "~ %TIME-TEST51°%")
(format *data* ""%TIME-TEST51"%")
(setq values (make-array ’(100) :fill-pointer 0))
*all
(*let ((v45 (random!! (1! (the fxnum (ash 1 45)))})
(v45dest (random!! {!! (the fixnum (ash 1 45)}}))
(dest-address (-!! (!t {the ixaum (- cm:*user-cube-address-limit* 1)))
(the (feld-pvar cm:*cube-address-length*)(self-address!!)))))
(declare (type (field-pvar 45) v45))
(declare (type (field-pvar 45) v45dest))
{declare {type (field-pvar cm:*cube-address-length*) dest-address))
(enable-all)
(*set dest-address (the {field-pvar cm:*cube-address-length*)
(deposit-byte!! dest-address (!! (the ixnum 0))
("1 (the fixnum 2j)(!! (the fixnum 0))}))
(let ((v45-addr (pvar-location v45))
(v45dest-addr (pvar-location véSdest))
(dest-address-addr (pvar-location dest-address)))
(declare (type integer v45-addr v45dest-addr dest-address-addr))
(dotimes (i time-loop)
(enable-all)
(format ¢t "~d~%" i)
(multiple-value-bind (a cm-time b ¢)
(em:time
(with-paris-from-*lisp
(dotimes (j test-loop)
(cm:get v45dest-addr dest-address-addr v45-addr 45)))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
{concentration dest-address)
(statistics values time-loop)))))

;i Timing #52

1 7/6/88

iy Written by: Bill O’Farrell

;i Modified by: David Myers .

; Description: Every processor receiving a read request, receives
exactly 16 request. cm:get is used.

;;; Active Processors: All

;i Size of Data Used: 45 bit unsigned integers.

(*defun time-test52 (time-loop test-loop)

format *fp* "~ %TIME-TEST52"%")

format *data* ""% TIME-TEST52"%")

(setq values (make-array '(100) :fill-pointer 0))

*all

(*let ((v45 (random!! (1! (the fixnum {ash 1 45)))))

v45dest (random!! (! (the fixnum (ash 1 45)))))
dest-address (-!! (! {the fxnum (- cm:*user-cube-address-limit* 1)))
(the (field-pvar cm:*cube-address-length*})(self-address!!)))))

declare (type (Beld-pvar 45) v45))
declare (type (8eld-pvar 45) v45dest))
declare itype {field-pvar cm:*cube-address-length®) dest-address))
(enable-all)
(*set dest-address (the (feld-pvar cm:*cube-address-length*)

deposit-byte!! dest-address (!! (the fixnum 0))

11 (the fixnum 4))(!! (the fixnum 0)))))
(v45-addr (pvar-location v45))
v4bdest-addr (pvar-location v45dest))
dest-address-addr (pvar-location dest-address)))
édeclue (type integer v45-addr v45dest-addr dest-address-addr))
dotimes (i time-loop)

zenablo-tll)

(let

format t ""d~%" i)
multiple-value-bind (a cm-time b ¢}
(em:time

(with-paris-from-*lisp

December 1988

Appendix B: final-syracuse-test.lisp

TR 88.19 -98 - December 1988

(dotimes {j test-loop)
(cm:get v45dest-addr dest-address-addr v45-addr 45)))
:return-statistics-only-p t)
{vector-push (/ cm-time test-loop) values)))
{concentration dest-address)
(statistics values time-loop)))))

ii Timing #53

i 7/6/88

331 Written by: Biil O'Farrell
i3 Modified by: David Myers

;v Description: Every processor receiving a read request, receives
B exactly 256 request. cm:get is used.

;i Active Processors: All

;3» Size of Data Used: 45 bit unsigned integers.

(*defun time-test53 (time-loop test-loop)
(format *fp* "~ %TIME-TEST53"%")
(format *data* ""%TIME-TEST53"%")
(:etq values {make-array '(100) :fill-pointer 0))
(*all
(*let ((v45 (random!! (!! {the ixnum (ash 1 45))}))
(v45dest (random!! (!! (the ixnum (ash 1 45}})})
(dest-address (-1! (1! (the fixsum (- cm:*user-cube-address-limit* 1)))
(the (field-pvar cm:*cube-address-length*)(self-address!!)))))
(declare (type {field-pvar 45) v45))
(declare (type (field-pvar 45) v45dest))
(declare (type (field-pvar cm:*cube-address-length*) dest-address))
(enable-all)
(*set dest-address (the (feld-pvar cm:*cube-address-length*)
(deposit-byte!! dest-address (!! (the fixnum 0))
(1 (the fxnum 8))(1! (the fixaum 0}))))
(let ((v45-addr (pvar-location v45))
(v45dest-addr (pvar-location v45dest))
(dest-address-addr (pvar-location dest-address)))
(declare (type integer v45-addr v45dest-addr dest-address-addr))
{dotimes (i time-loop)
(enable-all)
(format t "~d~%" i)
(multiple-value-bind (a cm-time b ¢)
(em:time
(with-paris-from-*lisp
(dotimes (j test-loop)
(cm:get v45dest-addr dest-address-addr v45-addr 45)))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(concentration dest-address)
(statisties values time-loop)))))

;v Timing #54

i 7/6/88

i5» Written by: Bill O'Farrell

i1 Modified by: David W. Myers

;i Description: Timing of an additive scan with 16 bit numbers.
i3y Active Processors: All

33+ Size of Data Used: 16 bit unsigned integers

(*defun time-test54 (time-loop test-loop)
(format *fp* "~%TIME-TEST54" %"
(format *data* ""%TIME-TEST54"%")
(enable-all}
(ietﬁ[values (make-array '(100) :fill-pointer 0))
al
(*let ((fvar (random!! (! {the fixnum (ash 1 §5)))))
(rvar (It (the fixnum 0))
(declare (type (Beld-pvar 16) fvar))
declare (type (feld-pvar 18) rvar))
dotimes (i time-loop)
(format ¢ "~d"%" i)
(multiple-value-bind (a cm-time b c)
(cm:time
(dotimes (j test-loop)
(*set rvar (scan!! fvar *+1)))

Appendix B: final-syracuse-test.lisp

TR 88.19

- 99 -

:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop))))

i+ Timing #55

3 7/6/88

iii Written by: Bill O'Farrell

117 Modified by: David W. Myers

i1+ Description: Timing of a max scan with 18 bit numbers.
i1 Active Processors: All

;33 Size of Data Used: 16 bit unsigned integers

(*defun time-test55 (time-loop test-loop)
(format *fp* "% TIME-TEST55~%")
(format *data* "~ % TIME-TEST55"%")
(enable-all)
Es'etl? values (make-array '(100) :fill-pointer 0))
a
(*let ((fvar (random!! (!t (the fixnum (ash 1 16)))))
(rvar (1! (the fixaum 0))))
(declare (type (field-pvar 16) fvar))
(declare (type (field-pvar 18) rvar))
(dotimes (i time-loop
(format t ""d~%" i)
(multiple-value-bind (a cm-time b ¢)
(cm:time
(dotimes (j test-loop)
(*set rvar (scanl! fvar 'maxit)))
:return-statistics-only-p t)
(vector-push {/ cm-time test-loop) values)))
(statistics values time-loop))))

i;3 Timing #56

;s 7/6/88

;i Written by: Bill O'Farrell

17 Modified by: David W. Myers

i+; Description: Timing of an additive scan with 16 bit numbers.
Y The paris call cm:unsigned-plus-scan is used.

;11 Active Processors: All

i3 Size of Data Used: 16 bit unsigned integers

(*defun time-test56 (time-loop test-loop)
(format *fp* "% TIME-TEST56"%")
(format *data* "~ % TIME-TEST56"%")
enable-all)
setq values (make-array '(100) :fll-pointer 0))
*all
(*let ({src-var (random!! (1! (the fixnum (ash 1 5)))))
(dest-var (!! (the fixnum 0))))
(declare (type (feid-pvar 16) src-var))
(declare (type (field-pvar 16) dest-var))
(let ((src-var-addr (pvar-location src-var))
(dest-var-addr (pvar-location dest-var)))
(declare (type integer src-var-addr dest-var-addr))
(dotimes (i time-loop)
(format t "~d"%" i)
(multiple-value-bind (a cm-time b ¢)
(cm:time
(with-paris-from-*lisp
(dotimes (j test-loop)
(cm:unsigned-plus-scan dest-var-addr src-var-addr 23 8)))
:return-statistics-only-p t)
{vector-push (/ cm-time test-loop) values)))
(statistics values time-loop)))))

;3; Timing #57
i 7/6/88

i5» Written by: Bill O’Farrell

;1 Modified by: David W. Myers

i+ Description: Timing of a max scan with 16 bit numbers.
HH The paris call cm:unsigned-max-scan is used.
;7 Active Processors: All

;i; Size of Data Used: 16 bit unsigned integers

December 1988

Appendix B: final-syracuse-test.lisp

- 100 -

(*defun time-test57 (time-loop test-loop)
{format *fp* "% TIME-TEST57"%")
(format *data* "% TIME-TEST57"%")
(enable-all)
E:etq values (make-array '(100) :fill-pointer 0))
all
(*let ({sre-var (random!! (1! (the fixaum (ash 1 5)))))
(dest-var ! (the fixnum 0)}))
(dectare (type (Held-pvar 16) src-var))
(declare (type (field-pvar 16) dest-var))
(let ((src-var-addr (pvar-location sre-var))
(dest-var-addr (pvar-location dest-var)))
(declare {type integer src-var-addr dest-var-addr))
(dotimes (i time-loop)
{format t "~d"%" i)
(multiple-value-bind (a cm-time b ¢)
(cm:time
(with-paris-from-*lisp
(dotimes (j test-loop)
(cm:unsigned-max-scan dest-var-addr src-var-addr 16)))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(statistica values time-loop)))))

;5 Timing #58

s 7/6/88

311 Written by: Bill O'Farrell

1;; Modified by: David Myers

;;; Description: This program times the ranking operation.
HH The *lisp function rank!! is used.

;7 Active Processors:
i+ Size of Data Used:

0
(*defun time-test58 {time-loop test-loop)
(format *fp* ""%TIME-TEST58"%")
(format *data* "“%TIME-TEST58"%")
(enable-all)
(setq values (make-array '(100) :fill-pointer 0))
(*all
{*let ({tvar (random!! (!! (the fixnum (ash 1 18))))))
(declare (type (field-pvar 16) fvar))
(dotimes (i time-loop)
format t "~d~%" i)
multiple-value-bind (a em-time b ¢}
(cm:time
(dotimes (j test-loop)
(ranki! fvar '<=1))
:return-statistics-oniy-p t)
(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop))))

;53 Timing #59

355 7/6/88
;i Written by: Bill O'Farrell
;7 Modified by: David Myers

;++ Description: Time the counting of the css.
iy Active Processors:
i;; Size of Data Used:

(*defun time-test59 (time-loop test-loop)
(format *fp* "~%TIME-TEST59"%"
(format *data* "~ % TIME-TEST59~%")
(enable-all)

(setq values (make-array '(100) :fill-pointer 0))
(*alt
(dotimes (i time-loop)
format t ""d"%" 1)
multiple-value-bind (a cm-time b c)
(em:time
(dotimes {j test-loop)
{cm:global-count cm:context-flag))
:return-statistics-only-p t)

December 1988

Appendix B: final-syracuse-test.lisp

TR 88.19

- 101 -

(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop)))
;si Timing #60

i 7/6/88

;i Written by: Bill O'Farrell

;i Modified by: David Myers

;;; Description: Every processor fetches a 45 bit unsigned integer
W from a random processor. Each fetch to a random PE
B can access one of a possible 84 locations in memory.
;v Active Processors: All

;i Size of Data Used: 45 bit unsigned integers.

FIINANIIIIREINIENINNNINNNEIINRIRINIININRIIIIINRRRININNINNNINNNNIRIIINNIININININIY

't Timing #63

i 7/6/88

;i Written by: Bill O'Farrell

;7 Modified by: David Myers

;;; Description: Each PE sends shifts a 45 bit unsigned integer a random
W number of positions. The paris call cm:shift is used.

;i Active Processors: All

;7 Size of Data Used: 45 bit unsigned integers.

("defun time-test83 (time-loop test-loop)
(format *fp* "~ %TIME-TEST63"%")
(format *data* "~%TIME-TEST63"%")
(setq values (make-array *(100) :fll-pointer 0))
(*all
(*let ((v45 (random!! (!t (the fixnum (ash 1 45)))))
(v45shift (random!! (!! (the fixnum 45)))))
(declare (type (field-pvar 45) v45))
(declare (type (field-pvar 8) v45shift))
(enable-all)
(let ((v45-addr (pvar-location v45))
(v45shift-addr (pvar-location v45shift)))
(declare (type integer v45-addr v45shift-addr))
(dotimes (i time-loop)
(format ¢t "~d~%" i)
{(multiple-value-bind {a cm-time b ¢)
(cm:time
(with-paris-from-*lisp
(dotimes (j test-loop)
(cm:shift v45-addr v45shift-addr 45 6)))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop)))))

;v Timing #65

i 7/6/88

i1 Written by: Bill O'Farrell

i1 Modified by: David W. Myers

;i; Description: A load-byte of 34 bits taken from a 748 bit field is tested.
" The paris call cm:aref is used.

i+ Active Processors: All

;;; Size of Data Used: 748 bit unsigned integers.

(‘defnn time-test85 (time-loop test-loop)
format *fp* "~ %TIME-TEST65"%")
format *data* "~%TIME-TEST65"%")
(enable-all)
(setq values (make-array '(100) :fll-pointer 0))
(*all
(*let ((v748 (random!! (1t (the fixaum (ash 1 748)))))
{vdest (I! (the fixnum 0)))
(index (!t (the ixnum 22))))
declare (type (field-pvar 748) v748))
declare (type (field-pvar 34) vdest)
declare (type (field-pvar 5) index))
(enable-all)
(let ({v748-addr (pvar-location v748))
vdest-addr (pvar-location vdest)
index-addr (pvar-location index)))
(declare (type integer v748-addr vdest-addr index-addr))

December 1988

Appendix B: final-syracuse-test.lisp

TR 88.19 - 102 -

{dotimes (i time-loop)
{enable-ali)
format t ""d~%" i)
multiple-value-bind (a cm-time b ¢)
(cm:time
(dotimes (j test-loop)
(cm:aref vdest-addr v748-addr index-addr 34 5 22 34))
:return-statistics-only-p t)
(vector-push {/ cm-time test-loop) values)))
(statistics values time-loop)))))

;i; Timing #67

;i 7/6/88

i1» Written by: Bill O'Farrell

i5» Modified by: David W. Myers

;i» Description:

;i Active Processors: All

;i1 Size of Data Used: 1240 bit unsigned integers.

i;’defun time-test67 (time-loop test-loop)
(format *fp* "~%TIME-TEST67-%")
(format *data* "~%TIME-TEST87"%")
(enable-all)
(:etq values (make-array '(100) :&1l-pointer 0))
all
(*let ((v1240 (random!! (! (the fixnum (ash 1 748)))))
(vdest (1! (the fixnum 0}))
(index (!! (the fixaum 22))))
(declare (type (field-pvar 748) v1240))
(declare (type (field-pvar 34)_ vdest))
gdeclbalre (ltl))!pe (Geld-pvar 5) index))
enable-a)
(let {(v1240-addr (pvar-location v1240))
(vdest-addr (pvar-location vdest))
(index-addr (pvar-location index)))
(declare (type integer v1240-addr vdest-addr index-addr))
(dotimes (i time-loop)
{enable-all)
(format t "~d~%" i)
(multiple-value-bind (a cm-time b ¢)
(cm:time
(dotimes (j test-loop)
(cm:aref vdest-addr v1240-addr index-addr 31 6 40 31))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop)))))

ii; Timing #71

i 7/6/88

;i Written by: Bill O’Farrell

35 Modified by: David W. Myers

;i+ Description: This program times the movement of one pvar to another pvar.
;13 Active Processors: All

;3; Size of Data Used: 45 bit unsigned integers.

(*defun time-test71 (time-loop test-loop)
(format *fp* "% TIME-TEST71"%")
{format *data* "% TIME-TEST71"%")
ﬁenable-all) o
(:etq values (make-array '(100) :fill-pointer 0))
all
(*1et ((v45 (random!! (1! {the fixnum (ash 1 45)))))
{v45dest (randoml! (1! (the fixnum (ash 1 45))))))
{declare (type (feld-pvar 45) v45))
declare (type (field-pvar 45) v45dest))
dotimes (i time-loop)
(format t "~d"%" i)
(multiple-value-bind (a cm-time b ¢}
(cm:time
(dotimes (j test-loop)
(*aet v45dest v45))
:return-statistics-only-p t)

December 1988

Appendix B: final-syracuse-test.lisp

TR 88.19

- 103 -

(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop))))

i Timing #72

i 7/6/88

iii Written by: Bill O'Farrell
17 Modified by: David W. Myers

The paris function cm:move is used.
i1 Active Processors: All
i+ Size of Data Used: 45 bit unsigned integers.

(*defun time-test72 (time-loop test-loop)
(format *fp* "~ %TIME-TEST72"%")
(format *data* ""%TIME-TEST72"%")
{enable-all)
(setq values (make-array '(100) :fill-pointer 0))
(*all
(*tet ((v45 (random!! (!! (the fixnum (ash 1 45)))))
(v45dest (random!! (!! (the fixnum (ash 1 45))))))
{declare (type (field-pvar 45) v45))
(declare (type (Beld-pvar 45) v45dest))
(let ((v45-addr (pvar-location v45))
(v45dest-addr {pvar-location v45dest)))
(declare (type integer v45-addr v45dest-addr))
(dotimes (i time-loop)
(format t "d~%" i)
(multiple-value-bind (a cm-time b ¢)
{em:time
{with-paris-from-*lisp
(dotimes (j test-loop)
(em:move v45dest-addr v45-addr 45)))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop)))))

;i Timing #73

5 7/6/88

;v Written by: Bill O’Farrell

;7 Modified by: David W. Myers

;i3 Description: This program times the movement of one pvar to another pvar.
;17 Active Processors: All

;i; Size of Data Used: 150 bit unsigned integers.

(*defun time-test73 (time-loop test-loop)
(format *fp* "% TIME-TEST73"%")
(format-*data* ""%BTIME-TEST73"%")
(enable-all)
(setq values {(make-array ’(100) :fill-pointer 0))
*all
(*let ((v150 (random!! (1! (the fixnum (ash 1 150)))))
(v150dest (random!! (1! (the fixnum (ash 1 150))))))
declare (type (field-pvar 150) v150))
declare (type (feld-pvar 150) v150dest))
dotimes (i time-loop
(format t "~d~%" i)
(multiple-value-bind (a cm-time b ¢)
(cm:time
(dotimes (j test-loop)
(*set v150dest v150))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop))))

s Timing #74

i 7/6/88

;i Written by: Bill O’'Farrell

;i Modified by: David W. Myers

;i Description: This programs the amount of time it take to do a floating
W point addition.

;3 Active Processors: All

++; Sise of Data Used: double-float

M

; Description: This program times the movement of one pvar to another pvar.

December 1988

Appendix B: final-syracuse-test.lisp

TR 88.19 - 104 -

(*defun time-test74 (time-loop test-loop)
format *fp* "% TIME-TEST74"%")
format *data* "~%TIME-TEST74~%")
enable-all)
%:etq values (make-array ’(100) :fill-pointer 0))
all
(*let ((x (! (the double-foat 4.483624498)))
{y (1! (the double-Roat 3.141502654))))
(declare (type double-float-pvar x))
(declare (type double-float-pvar y))
(dotimes (i time-loop
(format t "~d~%" i)
*set x (!! (the double-float 4.483624498)))
multiple-value-bind (a em-time b ¢)
{cm:time
(dotimes (j test-loop)
(*set x (+1 x ¥)))
:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
(statistics values time-loop))))

;;; Timing #75

i 7/8/88
;3 Written by: Bill O’Farrell
;7 Modified by: David W. Myers

;31 Description: This programs reports the time required to do a floating
W point multiply.

;i Active Processors: All

i+; Size of Data Used: double-float

(*defun time-test75 (time-loop test-loop)
{format *fp* "% TIME-TEST75~%"
{format *data* "~ % TIME-TEST75"%")
(enable-all)
setq values (make-array ‘(100) :fill-pointer 0))
*all
(*let ((x (! (the double-Aoat 4.483624498)))
(v (!t (the double-float 3.141592654))))
(declare (type double-foat-pvar x)
(declare itype double-float-pvar y)
(dotimes (i time-loop)
(format t ""d“%" i)
(*set x (1! (the double-foat 4.483624498)))
{multiple-value-bind (a cm-time b c)

(c(r:o::::u Q test-loop)
(*set x (*!1! x ¥)))

:return-statistics-only-p t)
(vector-push (/ cm-time test-loop) values)))
{statistics values time-loop))))

i;i Timing #78

s T/6/88

;s Written by: Bill O'Farrell
i1i Modified by: David W. Myers

;;; Description: This programs reports the time required to do a global
W sum of unsigned integers.

;i Active Processors: All

;31 Size of Data Used: 45 bit unsigned integers

(*defun time-test76 (time-loop test-loop)
(format *fp* "~%TIME-TEST76"%"
(format *data* "% TIME-TEST76~%")
{enable-all)
(setq values (make-array ’(100) :fill-pointer 0))
*all
((*let ((fvar (random!! (! {the fixnum (ash 1 5))))))
declare (type (field-pvar 16) fvar))
let ((host-var 0))
(dotimes (i time-loop)
format t "~d~%" i)
setq host-var 0)
multiple-value-bind (a cm-time b ¢)

December 1988

Appendix B: final-syracuse-test.lisp

TR 88.19 - 105 - December 1988

(cm:time
(dotimes {j test-loop)
(setq host-var (*sum fvar)))
:return-statistics-only-p t)
(vector-push {/ cm-time test-loop) values)))
(statistics values time-loop)))))

Appendix B: final-syracuse-test.lisp

TR 88.19 - 106 - December 1988

Appendix C

Batch Command Utilities

TR 88.19 - 107 - December 1988

#
@ srt_hr = Sargv|l}
@ srt_ma = $argv|2)
@ continue =1
set directory = ‘pwd’
@ ck-hour = 0
@ ck_min = 0
set time = ‘date | awk ' { print $4 }
@ hours = 'echo $time | sed 's/:..;..//
@ minutes = ‘echo Stime | sed 's/..://’ | sed 's/:..//"
while ($continue ==1
sleep 900
@ prev_min == $minutes
@ prev_hour = Shours
set time = ‘date | awk ’ { print $4 } **
@ hours = ‘echo $time | sed 's/:..:../ /"
@ minutes = ‘echo $time | sed ’s/...//* | sed 's/:../ /"
@ hr_plus = ($prev_hour +1) % 24
@ mn_plus = ($srt_mn +15) % 60 :
if { ($srt_hr == Shours) && ($srt_mn == $minutes)) then -
@ continue = 0
else if (($srt_hr == $hours) && ($srt_mn < (15 + Sminutes))) then
@ continue = 0
endif
end
date >&! /tmp/trash&
CMrun >&! /tmp/trash&
date >&! /tmp/trash&

"

Appendix C: night

TR 88.19 - 108 - December 1988

echo "(load \"foo\")" | starlisp

Appendix C: CMrun

TR 88.19

- 109 - December 1988

#
@ srt_hr = Sargv(l]
@ srt_mn = Sargv|2]
@ continue = 1
set directory = ‘pwd*
@ ck_hour =0
@ ck-min = 0
set time = ‘date | awk * { print $4 } **
@ hours = ‘echo $time | sed 's/:.....//"
@ minutes = ‘echo $time | sed ’s/..://’ | sed 's/:../ /"
while ($continue ==1)
sleep 900
@ prev_min = $minutes
@ prev_hour = $hours
set time = ‘date | awk ’ { print 34 }
@ hours = ‘echo $time | sed 's/:..:..
@ minutes == ‘echo $time | sed ’s/.. // | aed 's/:../ /"
@ hr_plus = ($prev_hour +1) % 24
@ mn_plus = ($srt_mn + 15) % 60
if ({$srt_hr == $hours) && {$srt_mn == $minutes)) then
@ continue = 0
else if {($srt_hr == $hours) && ($srt_mn < (15 + $minutes))) then
@ continue = 0
endif
end
date >&! /tmp/trash&
old-CMrun >&! /tmp/trash&
date >&! /tmp/trash&

Appendix C: old-night

TR 88.19 - 110 - December 1988

echo "(load \"foo\")" | old-starlisp

Appendix C: old-CMrun

TR 88.19 - 111 - December 1988

(in-package '*lisp)
*cold-boot)

load "FILE-NAME.vbin")
main)

system:quit)

. Appendix C: foo

